{"title":"一种与传统神经网络近似等价的神经网络用于非线性系统的最坏情况辨识与控制","authors":"Jin-Tsong Jeng, Tsu-Tian Lee","doi":"10.1109/IJCNN.1999.832711","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an approximate equivalence neural network model with a fast learning speed as well as a good function approximation capability, and a new objective function, which satisfies the H/sup /spl infin// induced norm to solve the worst-case identification and control of nonlinear problems. The approximate equivalence neural network not only has the same capability of universal approximator, but also has a faster learning speed than the conventional feedforward/recurrent neural networks. Based on this approximate transformable technique, the relationship between the single-layered neural network and multilayered perceptrons neural network is derived. It is shown that a approximate equivalence neural network can be represented as a functional link network that is based on Chebyshev polynomials. We also derive a new learning algorithm such that the infinity norm of the transfer function from the input to the output is under a prescribed level. It turns out that the approximate equivalence neural network can be extended to do the worst-case problem, in the identification and control of nonlinear problems.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An approximate equivalence neural network to conventional neural network for the worst-case identification and control of nonlinear system\",\"authors\":\"Jin-Tsong Jeng, Tsu-Tian Lee\",\"doi\":\"10.1109/IJCNN.1999.832711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an approximate equivalence neural network model with a fast learning speed as well as a good function approximation capability, and a new objective function, which satisfies the H/sup /spl infin// induced norm to solve the worst-case identification and control of nonlinear problems. The approximate equivalence neural network not only has the same capability of universal approximator, but also has a faster learning speed than the conventional feedforward/recurrent neural networks. Based on this approximate transformable technique, the relationship between the single-layered neural network and multilayered perceptrons neural network is derived. It is shown that a approximate equivalence neural network can be represented as a functional link network that is based on Chebyshev polynomials. We also derive a new learning algorithm such that the infinity norm of the transfer function from the input to the output is under a prescribed level. It turns out that the approximate equivalence neural network can be extended to do the worst-case problem, in the identification and control of nonlinear problems.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.832711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.832711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An approximate equivalence neural network to conventional neural network for the worst-case identification and control of nonlinear system
In this paper, we propose an approximate equivalence neural network model with a fast learning speed as well as a good function approximation capability, and a new objective function, which satisfies the H/sup /spl infin// induced norm to solve the worst-case identification and control of nonlinear problems. The approximate equivalence neural network not only has the same capability of universal approximator, but also has a faster learning speed than the conventional feedforward/recurrent neural networks. Based on this approximate transformable technique, the relationship between the single-layered neural network and multilayered perceptrons neural network is derived. It is shown that a approximate equivalence neural network can be represented as a functional link network that is based on Chebyshev polynomials. We also derive a new learning algorithm such that the infinity norm of the transfer function from the input to the output is under a prescribed level. It turns out that the approximate equivalence neural network can be extended to do the worst-case problem, in the identification and control of nonlinear problems.