{"title":"线性回归的信噪比测试:大数据时代的测试","authors":"Jae H. Kim","doi":"10.2139/ssrn.3884683","DOIUrl":null,"url":null,"abstract":"This paper proposes a test for the signal-to-noise ratio applicable to a range of significance tests and model diagnostics in a linear regression. It is particularly useful under a large or massive sample size, where a conventional test frequently rejects an economically negligible deviation from the null hypothesis. The test is conducted in the context of the traditional $F$-test, with its critical values increasing with sample size. It maintains desirable size properties under a large or massive sample size, when the null hypothesis is violated by a practically negligible margin.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"359 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing for Signal-to-Noise Ratio in Linear Regression: A Test for Big Data Era\",\"authors\":\"Jae H. Kim\",\"doi\":\"10.2139/ssrn.3884683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a test for the signal-to-noise ratio applicable to a range of significance tests and model diagnostics in a linear regression. It is particularly useful under a large or massive sample size, where a conventional test frequently rejects an economically negligible deviation from the null hypothesis. The test is conducted in the context of the traditional $F$-test, with its critical values increasing with sample size. It maintains desirable size properties under a large or massive sample size, when the null hypothesis is violated by a practically negligible margin.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"359 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3884683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3884683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Testing for Signal-to-Noise Ratio in Linear Regression: A Test for Big Data Era
This paper proposes a test for the signal-to-noise ratio applicable to a range of significance tests and model diagnostics in a linear regression. It is particularly useful under a large or massive sample size, where a conventional test frequently rejects an economically negligible deviation from the null hypothesis. The test is conducted in the context of the traditional $F$-test, with its critical values increasing with sample size. It maintains desirable size properties under a large or massive sample size, when the null hypothesis is violated by a practically negligible margin.