{"title":"从下面的密度估计与a . Zygmund关于Lipschitz微分的猜想有关","authors":"T. Pauw","doi":"10.5802/jep.211","DOIUrl":null,"url":null,"abstract":"Letting $A \\subset \\mathbb{R}^n$ be Borel measurable and $W_0 : A \\to \\mathbb{G}(n,m)$ Lipschitzian, we establish that \\begin{equation*} \\limsup_{r \\to 0^+} \\frac{\\mathcal{H}^m \\left[ A \\cap B(x,r) \\cap (x+ W_0(x))\\right]}{\\alpha(m)r^m} \\geq \\frac{1}{2^n}, \\end{equation*} for $\\mathcal{L}^n$-almost every $x \\in A$. In particular, it follows that $A$ is $\\mathcal{L}^n$-negligible if and only if $\\mathcal{H}^m(A \\cap (x+W_0(x))=0$, for $\\mathcal{L}^n$-almost every $x \\in A$.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density estimate from below in relation to a conjecture of A. Zygmund on Lipschitz differentiation\",\"authors\":\"T. Pauw\",\"doi\":\"10.5802/jep.211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Letting $A \\\\subset \\\\mathbb{R}^n$ be Borel measurable and $W_0 : A \\\\to \\\\mathbb{G}(n,m)$ Lipschitzian, we establish that \\\\begin{equation*} \\\\limsup_{r \\\\to 0^+} \\\\frac{\\\\mathcal{H}^m \\\\left[ A \\\\cap B(x,r) \\\\cap (x+ W_0(x))\\\\right]}{\\\\alpha(m)r^m} \\\\geq \\\\frac{1}{2^n}, \\\\end{equation*} for $\\\\mathcal{L}^n$-almost every $x \\\\in A$. In particular, it follows that $A$ is $\\\\mathcal{L}^n$-negligible if and only if $\\\\mathcal{H}^m(A \\\\cap (x+W_0(x))=0$, for $\\\\mathcal{L}^n$-almost every $x \\\\in A$.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Density estimate from below in relation to a conjecture of A. Zygmund on Lipschitz differentiation
Letting $A \subset \mathbb{R}^n$ be Borel measurable and $W_0 : A \to \mathbb{G}(n,m)$ Lipschitzian, we establish that \begin{equation*} \limsup_{r \to 0^+} \frac{\mathcal{H}^m \left[ A \cap B(x,r) \cap (x+ W_0(x))\right]}{\alpha(m)r^m} \geq \frac{1}{2^n}, \end{equation*} for $\mathcal{L}^n$-almost every $x \in A$. In particular, it follows that $A$ is $\mathcal{L}^n$-negligible if and only if $\mathcal{H}^m(A \cap (x+W_0(x))=0$, for $\mathcal{L}^n$-almost every $x \in A$.