Peter Hillyard, Cheng Qi, Amal Al-Husseiny, G. Durgin, Neal Patwari
{"title":"穿透墙壁聚焦:e形贴片天线改善了整个家庭的无线电断层扫描","authors":"Peter Hillyard, Cheng Qi, Amal Al-Husseiny, G. Durgin, Neal Patwari","doi":"10.1109/RFID.2017.7945605","DOIUrl":null,"url":null,"abstract":"Tagless identification and tracking with through-wall received signal strength-based radio tomographic imaging (RTI) allows emergency responders to learn where people are inside of a building before entering the building. Use of directional antennas in RTI nodes focuses RF power along the link line, improving system performance. However, antennas placed on a building's exterior wall can be detuned by their close proximity to the dielectric, thus sending power across wider angles and resulting in less accurate imaging. In this paper, we improve through-wall RTI by using an E-shaped patch antenna we design to be mounted to an exterior wall. Along with its directionality, the E-shaped patch antenna is designed to avoid impedance mismatches when brought into close proximity of a dielectric material, thus increasing radiation through the exterior wall and along the link line. From our experiments, we demonstrate that the E-shaped patch antenna can reduce the median root mean square localization error by up to 43% when compared to microstrip patch and omnidirectional antennas. For equal error performance, the E-shaped patch antenna allows an RTI system to reduce power and bandwidth usage by using fewer nodes and measuring on fewer channels.","PeriodicalId":251364,"journal":{"name":"2017 IEEE International Conference on RFID (RFID)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Focusing through walls: An E-shaped patch antenna improves whole-home radio tomography\",\"authors\":\"Peter Hillyard, Cheng Qi, Amal Al-Husseiny, G. Durgin, Neal Patwari\",\"doi\":\"10.1109/RFID.2017.7945605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tagless identification and tracking with through-wall received signal strength-based radio tomographic imaging (RTI) allows emergency responders to learn where people are inside of a building before entering the building. Use of directional antennas in RTI nodes focuses RF power along the link line, improving system performance. However, antennas placed on a building's exterior wall can be detuned by their close proximity to the dielectric, thus sending power across wider angles and resulting in less accurate imaging. In this paper, we improve through-wall RTI by using an E-shaped patch antenna we design to be mounted to an exterior wall. Along with its directionality, the E-shaped patch antenna is designed to avoid impedance mismatches when brought into close proximity of a dielectric material, thus increasing radiation through the exterior wall and along the link line. From our experiments, we demonstrate that the E-shaped patch antenna can reduce the median root mean square localization error by up to 43% when compared to microstrip patch and omnidirectional antennas. For equal error performance, the E-shaped patch antenna allows an RTI system to reduce power and bandwidth usage by using fewer nodes and measuring on fewer channels.\",\"PeriodicalId\":251364,\"journal\":{\"name\":\"2017 IEEE International Conference on RFID (RFID)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on RFID (RFID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFID.2017.7945605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on RFID (RFID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFID.2017.7945605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Focusing through walls: An E-shaped patch antenna improves whole-home radio tomography
Tagless identification and tracking with through-wall received signal strength-based radio tomographic imaging (RTI) allows emergency responders to learn where people are inside of a building before entering the building. Use of directional antennas in RTI nodes focuses RF power along the link line, improving system performance. However, antennas placed on a building's exterior wall can be detuned by their close proximity to the dielectric, thus sending power across wider angles and resulting in less accurate imaging. In this paper, we improve through-wall RTI by using an E-shaped patch antenna we design to be mounted to an exterior wall. Along with its directionality, the E-shaped patch antenna is designed to avoid impedance mismatches when brought into close proximity of a dielectric material, thus increasing radiation through the exterior wall and along the link line. From our experiments, we demonstrate that the E-shaped patch antenna can reduce the median root mean square localization error by up to 43% when compared to microstrip patch and omnidirectional antennas. For equal error performance, the E-shaped patch antenna allows an RTI system to reduce power and bandwidth usage by using fewer nodes and measuring on fewer channels.