极极几何估计的进化因子

M. Hu, G. Dodds, Baozong Yuan
{"title":"极极几何估计的进化因子","authors":"M. Hu, G. Dodds, Baozong Yuan","doi":"10.1109/ICIP.2004.1421435","DOIUrl":null,"url":null,"abstract":"This paper presents an evolutionary agent-based approach to epipolar geometry estimation. Each agent stands for a minimum subset for computing fundamental matrix, and evolves autonomously in the vast solution space to get the optimal result. In so doing, the agents rely on some reactive behaviors such as reproduction and diffusion, and collaborate with others with a subset template. Experimental results show that our approach performs better than other typical methods in terms of accuracy and computational efficiency, and is robust to noise and outliers.","PeriodicalId":184798,"journal":{"name":"2004 International Conference on Image Processing, 2004. ICIP '04.","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evolutionary agents for epipolar geometry estimation\",\"authors\":\"M. Hu, G. Dodds, Baozong Yuan\",\"doi\":\"10.1109/ICIP.2004.1421435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an evolutionary agent-based approach to epipolar geometry estimation. Each agent stands for a minimum subset for computing fundamental matrix, and evolves autonomously in the vast solution space to get the optimal result. In so doing, the agents rely on some reactive behaviors such as reproduction and diffusion, and collaborate with others with a subset template. Experimental results show that our approach performs better than other typical methods in terms of accuracy and computational efficiency, and is robust to noise and outliers.\",\"PeriodicalId\":184798,\"journal\":{\"name\":\"2004 International Conference on Image Processing, 2004. ICIP '04.\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Conference on Image Processing, 2004. ICIP '04.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2004.1421435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Image Processing, 2004. ICIP '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2004.1421435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于进化智能体的极面几何估计方法。每个智能体代表一个计算基本矩阵的最小子集,并在广阔的解空间中自主进化以获得最优结果。在这样做的过程中,代理依赖于一些反应性行为,如繁殖和扩散,并与具有子集模板的其他代理协作。实验结果表明,该方法在精度和计算效率方面优于其他典型方法,并且对噪声和异常值具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary agents for epipolar geometry estimation
This paper presents an evolutionary agent-based approach to epipolar geometry estimation. Each agent stands for a minimum subset for computing fundamental matrix, and evolves autonomously in the vast solution space to get the optimal result. In so doing, the agents rely on some reactive behaviors such as reproduction and diffusion, and collaborate with others with a subset template. Experimental results show that our approach performs better than other typical methods in terms of accuracy and computational efficiency, and is robust to noise and outliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信