基于协同过滤的电影类型分类

Raji Ghawi, J. Pfeffer
{"title":"基于协同过滤的电影类型分类","authors":"Raji Ghawi, J. Pfeffer","doi":"10.1145/3366030.3366034","DOIUrl":null,"url":null,"abstract":"In this paper, we present an approach for classifying movie genres based on user-ratings. Our approach is based on collaborative filtering (CF), a common technique used in recommendation systems, where the similarity between movies based on user-ratings, is used to predict the genres of movies. The results of conducted experiments show that our genres classification approach outperforms many existing approaches, by achieving an F1-score of 0.70, and a hit-rate of 94%.","PeriodicalId":446280,"journal":{"name":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Movie Genres Classification using Collaborative Filtering\",\"authors\":\"Raji Ghawi, J. Pfeffer\",\"doi\":\"10.1145/3366030.3366034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an approach for classifying movie genres based on user-ratings. Our approach is based on collaborative filtering (CF), a common technique used in recommendation systems, where the similarity between movies based on user-ratings, is used to predict the genres of movies. The results of conducted experiments show that our genres classification approach outperforms many existing approaches, by achieving an F1-score of 0.70, and a hit-rate of 94%.\",\"PeriodicalId\":446280,\"journal\":{\"name\":\"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366030.3366034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366030.3366034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种基于用户评分对电影类型进行分类的方法。我们的方法基于协同过滤(CF),这是推荐系统中使用的一种常用技术,其中基于用户评分的电影之间的相似性用于预测电影的类型。实验结果表明,我们的类型分类方法优于许多现有的方法,达到了0.70的f1分数和94%的命中率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Movie Genres Classification using Collaborative Filtering
In this paper, we present an approach for classifying movie genres based on user-ratings. Our approach is based on collaborative filtering (CF), a common technique used in recommendation systems, where the similarity between movies based on user-ratings, is used to predict the genres of movies. The results of conducted experiments show that our genres classification approach outperforms many existing approaches, by achieving an F1-score of 0.70, and a hit-rate of 94%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信