{"title":"上下文感知集成开发环境命令推荐系统","authors":"Marko Gasparic, Tural Gurbanov, F. Ricci","doi":"10.1109/ASE.2017.8115679","DOIUrl":null,"url":null,"abstract":"Integrated development environments (IDEs) are complex applications that integrate multiple tools for creating and manipulating software project artifacts. To improve users' knowledge and the effectiveness of usage of the available functionality, the inclusion of recommender systems into IDEs has been proposed. We present a novel IDE command recommendation algorithm that, by taking into account the contexts in which a developer works and in which different commands are usually executed, is able to provide relevant recommendations. We performed an empirical comparison of the proposed algorithm with state-of-the-art IDE command recommenders on a real-world data set. The algorithms were evaluated in terms of precision, recall, F1, k-tail, and with a new evaluation metric that is specifically measuring the usefulness of contextual recommendations. The experiments revealed that in terms of the contextual relevance and usefulness of recommendations the proposed algorithm outperforms existing algorithms.","PeriodicalId":382876,"journal":{"name":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Context-aware integrated development environment command recommender systems\",\"authors\":\"Marko Gasparic, Tural Gurbanov, F. Ricci\",\"doi\":\"10.1109/ASE.2017.8115679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrated development environments (IDEs) are complex applications that integrate multiple tools for creating and manipulating software project artifacts. To improve users' knowledge and the effectiveness of usage of the available functionality, the inclusion of recommender systems into IDEs has been proposed. We present a novel IDE command recommendation algorithm that, by taking into account the contexts in which a developer works and in which different commands are usually executed, is able to provide relevant recommendations. We performed an empirical comparison of the proposed algorithm with state-of-the-art IDE command recommenders on a real-world data set. The algorithms were evaluated in terms of precision, recall, F1, k-tail, and with a new evaluation metric that is specifically measuring the usefulness of contextual recommendations. The experiments revealed that in terms of the contextual relevance and usefulness of recommendations the proposed algorithm outperforms existing algorithms.\",\"PeriodicalId\":382876,\"journal\":{\"name\":\"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2017.8115679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2017.8115679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Context-aware integrated development environment command recommender systems
Integrated development environments (IDEs) are complex applications that integrate multiple tools for creating and manipulating software project artifacts. To improve users' knowledge and the effectiveness of usage of the available functionality, the inclusion of recommender systems into IDEs has been proposed. We present a novel IDE command recommendation algorithm that, by taking into account the contexts in which a developer works and in which different commands are usually executed, is able to provide relevant recommendations. We performed an empirical comparison of the proposed algorithm with state-of-the-art IDE command recommenders on a real-world data set. The algorithms were evaluated in terms of precision, recall, F1, k-tail, and with a new evaluation metric that is specifically measuring the usefulness of contextual recommendations. The experiments revealed that in terms of the contextual relevance and usefulness of recommendations the proposed algorithm outperforms existing algorithms.