保角映射数值求值的快速算法

S. O'Donnell, V. Rokhlin
{"title":"保角映射数值求值的快速算法","authors":"S. O'Donnell, V. Rokhlin","doi":"10.1137/0910031","DOIUrl":null,"url":null,"abstract":"An algorithm is presented for the construction of conformal mappings from arbitrary simply connected regions in the complex plane onto the unit disk. The algorithm is based on a combination of the Kerzman–Stein integral equation (see [Math. Anal, 236 (1978), pp. 85–93]) and the Fast Multipole Method for the evaluation of Cauchy-type integrals (see [V. Rokhlin, J. Comput. Phys., 60 (1985), pp. 187–207], [L. Greengard and V. Rokhlin, J. Comput. Phys., 73 (1987), pp. 325–348], [J. Carrier, L. Greengard, and V. Rokhlin, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 669–686], [L. F. Greengard, Ph.D. thesis, Department of Computer Science, Yale University, New Haven, CT, 1987]). Previously published methods for the construction of conformal mappings via the Kerzman–Stein equation have an asymptotic CPU time estimate of the order $O(n^2 )$, where n is the number of nodes in the discretization of the boundary of the region being mapped. The method presented here has an estimate of the order $O(n)$, making it an approach of choice in many situations. The performance of the algorithm is illustrated by several numerical examples.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"A Fast Algorithm for the Numerical Evaluation of Conformal Mappings\",\"authors\":\"S. O'Donnell, V. Rokhlin\",\"doi\":\"10.1137/0910031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm is presented for the construction of conformal mappings from arbitrary simply connected regions in the complex plane onto the unit disk. The algorithm is based on a combination of the Kerzman–Stein integral equation (see [Math. Anal, 236 (1978), pp. 85–93]) and the Fast Multipole Method for the evaluation of Cauchy-type integrals (see [V. Rokhlin, J. Comput. Phys., 60 (1985), pp. 187–207], [L. Greengard and V. Rokhlin, J. Comput. Phys., 73 (1987), pp. 325–348], [J. Carrier, L. Greengard, and V. Rokhlin, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 669–686], [L. F. Greengard, Ph.D. thesis, Department of Computer Science, Yale University, New Haven, CT, 1987]). Previously published methods for the construction of conformal mappings via the Kerzman–Stein equation have an asymptotic CPU time estimate of the order $O(n^2 )$, where n is the number of nodes in the discretization of the boundary of the region being mapped. The method presented here has an estimate of the order $O(n)$, making it an approach of choice in many situations. The performance of the algorithm is illustrated by several numerical examples.\",\"PeriodicalId\":200176,\"journal\":{\"name\":\"Siam Journal on Scientific and Statistical Computing\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam Journal on Scientific and Statistical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0910031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

给出了复平面上任意单连通区域到单位圆盘的保角映射的构造算法。该算法基于Kerzman-Stein积分方程(参见[数学])的组合。数学学报,236 (1978),pp. 85-93])和求解cauchy型积分的快速多极方法(参见[V.]。J.罗克林。理论物理。, 60 (1985), pp. 187-207], [L]。格林加德和罗克林,J.康普特。理论物理。[J] .中国农业科学,2003(2),第3 - 4页。李,L.格林加德,V.罗克林,SIAM J. Sci。中央集权。第一版。, 9(1988),页669-686],[L]。F. Greengard,博士论文,耶鲁大学计算机科学系,纽黑文,CT, 1987])。先前发表的通过Kerzman-Stein方程构造保形映射的方法具有O(n^2)$阶的渐近CPU时间估计,其中n是被映射区域边界离散化中的节点数。本文提出的方法具有O(n)阶的估计,使其成为许多情况下的一种选择方法。通过数值算例说明了该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fast Algorithm for the Numerical Evaluation of Conformal Mappings
An algorithm is presented for the construction of conformal mappings from arbitrary simply connected regions in the complex plane onto the unit disk. The algorithm is based on a combination of the Kerzman–Stein integral equation (see [Math. Anal, 236 (1978), pp. 85–93]) and the Fast Multipole Method for the evaluation of Cauchy-type integrals (see [V. Rokhlin, J. Comput. Phys., 60 (1985), pp. 187–207], [L. Greengard and V. Rokhlin, J. Comput. Phys., 73 (1987), pp. 325–348], [J. Carrier, L. Greengard, and V. Rokhlin, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 669–686], [L. F. Greengard, Ph.D. thesis, Department of Computer Science, Yale University, New Haven, CT, 1987]). Previously published methods for the construction of conformal mappings via the Kerzman–Stein equation have an asymptotic CPU time estimate of the order $O(n^2 )$, where n is the number of nodes in the discretization of the boundary of the region being mapped. The method presented here has an estimate of the order $O(n)$, making it an approach of choice in many situations. The performance of the algorithm is illustrated by several numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信