有向网络上的分布最小二乘

Mohammad Jahvani, M. Guay
{"title":"有向网络上的分布最小二乘","authors":"Mohammad Jahvani, M. Guay","doi":"10.1109/MED54222.2022.9837278","DOIUrl":null,"url":null,"abstract":"This paper proposes a distributed dynamics that solves the least-squares problem associated with a network system of linear algebraic equations. We consider static directed multi-agent networks. Each agent in the network has access to a private subset of the linear equations. Furthermore, we assume that agents cannot acquire any information about their \"out-degrees\" at any time. Under the strong connectivity condition on the underlying communication network, we show that the local estimated solution of each agent converges exponentially to the exact least-squares solution of the associated network system of linear algebraic equations.","PeriodicalId":354557,"journal":{"name":"2022 30th Mediterranean Conference on Control and Automation (MED)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Least-Squares over Directed Networks\",\"authors\":\"Mohammad Jahvani, M. Guay\",\"doi\":\"10.1109/MED54222.2022.9837278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a distributed dynamics that solves the least-squares problem associated with a network system of linear algebraic equations. We consider static directed multi-agent networks. Each agent in the network has access to a private subset of the linear equations. Furthermore, we assume that agents cannot acquire any information about their \\\"out-degrees\\\" at any time. Under the strong connectivity condition on the underlying communication network, we show that the local estimated solution of each agent converges exponentially to the exact least-squares solution of the associated network system of linear algebraic equations.\",\"PeriodicalId\":354557,\"journal\":{\"name\":\"2022 30th Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED54222.2022.9837278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED54222.2022.9837278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种求解线性代数方程组网络系统最小二乘问题的分布式动力学方法。我们考虑静态定向多智能体网络。网络中的每个代理都可以访问线性方程的私有子集。此外,我们假设代理在任何时候都无法获得有关其“out-degree”的任何信息。在底层通信网络的强连通性条件下,我们证明了每个智能体的局部估计解指数收敛于相关线性代数方程组的网络系统的精确最小二乘解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Least-Squares over Directed Networks
This paper proposes a distributed dynamics that solves the least-squares problem associated with a network system of linear algebraic equations. We consider static directed multi-agent networks. Each agent in the network has access to a private subset of the linear equations. Furthermore, we assume that agents cannot acquire any information about their "out-degrees" at any time. Under the strong connectivity condition on the underlying communication network, we show that the local estimated solution of each agent converges exponentially to the exact least-squares solution of the associated network system of linear algebraic equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信