{"title":"使用项目元数据预测冷启动项目评级的深度学习框架","authors":"Fahad Anwar, N. Iltaf, H. Afzal, Haider Abbas","doi":"10.1109/WETICE.2019.00071","DOIUrl":null,"url":null,"abstract":"Recommender systems improve browsing experience of users for large amount of items by assisting selection and classification of items utilizing item metadata. The performance of recommender system usually deteriorates when implicit data is used with limited user interaction history also regarded as cold start (CS) problem. This paper proposes a model to address cold start problem using content based technique where user or item metadata is used to break this ice barrier. The proposed method utilizes the feature extraction techniques (such as term frequencyInverse document frequency(TF-IDF)) and word embedding technique (Word2Vec). These content features are then used to predict the ratings for CS items by constructing user profiles using stacked auto-encoder. Experiments performed on largest real world dataset provided by Movielens 20M shows that proposed model outperforms the state-of-the-art approaches in CS item scenario.","PeriodicalId":116875,"journal":{"name":"2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Deep Learning Framework to Predict Rating for Cold Start Item Using Item Metadata\",\"authors\":\"Fahad Anwar, N. Iltaf, H. Afzal, Haider Abbas\",\"doi\":\"10.1109/WETICE.2019.00071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems improve browsing experience of users for large amount of items by assisting selection and classification of items utilizing item metadata. The performance of recommender system usually deteriorates when implicit data is used with limited user interaction history also regarded as cold start (CS) problem. This paper proposes a model to address cold start problem using content based technique where user or item metadata is used to break this ice barrier. The proposed method utilizes the feature extraction techniques (such as term frequencyInverse document frequency(TF-IDF)) and word embedding technique (Word2Vec). These content features are then used to predict the ratings for CS items by constructing user profiles using stacked auto-encoder. Experiments performed on largest real world dataset provided by Movielens 20M shows that proposed model outperforms the state-of-the-art approaches in CS item scenario.\",\"PeriodicalId\":116875,\"journal\":{\"name\":\"2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WETICE.2019.00071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WETICE.2019.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Deep Learning Framework to Predict Rating for Cold Start Item Using Item Metadata
Recommender systems improve browsing experience of users for large amount of items by assisting selection and classification of items utilizing item metadata. The performance of recommender system usually deteriorates when implicit data is used with limited user interaction history also regarded as cold start (CS) problem. This paper proposes a model to address cold start problem using content based technique where user or item metadata is used to break this ice barrier. The proposed method utilizes the feature extraction techniques (such as term frequencyInverse document frequency(TF-IDF)) and word embedding technique (Word2Vec). These content features are then used to predict the ratings for CS items by constructing user profiles using stacked auto-encoder. Experiments performed on largest real world dataset provided by Movielens 20M shows that proposed model outperforms the state-of-the-art approaches in CS item scenario.