一类二阶非线性微分方程两点边值问题正解的先验估计

É. Abduragimov
{"title":"一类二阶非线性微分方程两点边值问题正解的先验估计","authors":"É. Abduragimov","doi":"10.31029/demr.11.5","DOIUrl":null,"url":null,"abstract":"A priori estimates of the positive solution of the two-point boundary value problem are obtained $y^{\\prime\\prime}=-f(x,y)$, $0<x<1$, $y(0)=y(1)=0$ assuming that $f(x,y)$ is continuous at $x \\in [0,1]$, $y \\in R$ and satisfies the condition $a_0 x^{\\gamma}y^p \\leq f(x,y) \\leq a_1 y^p$, where $a_0>0$, $a_1>0$, $p>1$, $\\gamma \\geq 0$ -- constants.","PeriodicalId":431345,"journal":{"name":"Daghestan Electronic Mathematical Reports","volume":"357 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A priori estimates of the positive solution of the two-point boundary value problem for one second-order nonlinear differential equation\",\"authors\":\"É. Abduragimov\",\"doi\":\"10.31029/demr.11.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A priori estimates of the positive solution of the two-point boundary value problem are obtained $y^{\\\\prime\\\\prime}=-f(x,y)$, $0<x<1$, $y(0)=y(1)=0$ assuming that $f(x,y)$ is continuous at $x \\\\in [0,1]$, $y \\\\in R$ and satisfies the condition $a_0 x^{\\\\gamma}y^p \\\\leq f(x,y) \\\\leq a_1 y^p$, where $a_0>0$, $a_1>0$, $p>1$, $\\\\gamma \\\\geq 0$ -- constants.\",\"PeriodicalId\":431345,\"journal\":{\"name\":\"Daghestan Electronic Mathematical Reports\",\"volume\":\"357 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Daghestan Electronic Mathematical Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31029/demr.11.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Daghestan Electronic Mathematical Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31029/demr.11.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

得到两点边值问题正解的先验估计$y^{\prime\prime}=-f(x,y)$, $00$, $a_1>0$, $p>1$, $\gamma \geq 0$——常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A priori estimates of the positive solution of the two-point boundary value problem for one second-order nonlinear differential equation
A priori estimates of the positive solution of the two-point boundary value problem are obtained $y^{\prime\prime}=-f(x,y)$, $00$, $a_1>0$, $p>1$, $\gamma \geq 0$ -- constants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信