对称的组

Evelyn Zhu
{"title":"对称的组","authors":"Evelyn Zhu","doi":"10.1090/gsm/193/04","DOIUrl":null,"url":null,"abstract":"In this paper, we explore applications, examples, and representative theo-ries of Symmetric groups in a symmetric group. All elements are all bijections to the set itself, and the group operation is function composition. We begin by discussing the definition of symmetry with a few basic examples and applications. We then introduce and define some real-world applications followed by properties and special elements of symmetric groups. Lastly, we show the subgroup structure of symmetric groups and some of the representative theories.","PeriodicalId":167221,"journal":{"name":"A Tour of Representation Theory","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Symmetric groups\",\"authors\":\"Evelyn Zhu\",\"doi\":\"10.1090/gsm/193/04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore applications, examples, and representative theo-ries of Symmetric groups in a symmetric group. All elements are all bijections to the set itself, and the group operation is function composition. We begin by discussing the definition of symmetry with a few basic examples and applications. We then introduce and define some real-world applications followed by properties and special elements of symmetric groups. Lastly, we show the subgroup structure of symmetric groups and some of the representative theories.\",\"PeriodicalId\":167221,\"journal\":{\"name\":\"A Tour of Representation Theory\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"A Tour of Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/gsm/193/04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"A Tour of Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/gsm/193/04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在本文中,我们探讨了对称群在对称群中的应用、例子和代表性理论。所有元素都是集合本身的对射,群操作是函数组合。我们首先用几个基本的例子和应用来讨论对称的定义。然后,我们介绍和定义了一些现实世界中的应用,以及对称群的性质和特殊元素。最后,给出了对称群的子群结构及其代表性理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric groups
In this paper, we explore applications, examples, and representative theo-ries of Symmetric groups in a symmetric group. All elements are all bijections to the set itself, and the group operation is function composition. We begin by discussing the definition of symmetry with a few basic examples and applications. We then introduce and define some real-world applications followed by properties and special elements of symmetric groups. Lastly, we show the subgroup structure of symmetric groups and some of the representative theories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信