Brandon Brown, Alexicia Richardson, Marcellus Smith, Gerry V. Dozier, Michael C. King
{"title":"对抗性UFP/UFN攻击:对基于ml的假新闻检测系统的新威胁?","authors":"Brandon Brown, Alexicia Richardson, Marcellus Smith, Gerry V. Dozier, Michael C. King","doi":"10.1109/SSCI47803.2020.9308298","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two new attacks: the Adversarial Universal False Positive (UFP) Attack and the Adversarial Universal False Negative (UFN) Attack. The objective of this research is to introduce a new class of attack using only feature vector information. The results show the potential weaknesses of five machine learning (ML) classifiers. These classifiers include k-Nearest Neighbor (KNN), Naive Bayes (NB), Random Forrest (RF), a Support Vector Machine (SVM) with a Radial Basis Function (RBF) Kernel, and XGBoost (XGB).","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Adversarial UFP/UFN Attack: A New Threat to ML-based Fake News Detection Systems?\",\"authors\":\"Brandon Brown, Alexicia Richardson, Marcellus Smith, Gerry V. Dozier, Michael C. King\",\"doi\":\"10.1109/SSCI47803.2020.9308298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose two new attacks: the Adversarial Universal False Positive (UFP) Attack and the Adversarial Universal False Negative (UFN) Attack. The objective of this research is to introduce a new class of attack using only feature vector information. The results show the potential weaknesses of five machine learning (ML) classifiers. These classifiers include k-Nearest Neighbor (KNN), Naive Bayes (NB), Random Forrest (RF), a Support Vector Machine (SVM) with a Radial Basis Function (RBF) Kernel, and XGBoost (XGB).\",\"PeriodicalId\":413489,\"journal\":{\"name\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI47803.2020.9308298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Adversarial UFP/UFN Attack: A New Threat to ML-based Fake News Detection Systems?
In this paper, we propose two new attacks: the Adversarial Universal False Positive (UFP) Attack and the Adversarial Universal False Negative (UFN) Attack. The objective of this research is to introduce a new class of attack using only feature vector information. The results show the potential weaknesses of five machine learning (ML) classifiers. These classifiers include k-Nearest Neighbor (KNN), Naive Bayes (NB), Random Forrest (RF), a Support Vector Machine (SVM) with a Radial Basis Function (RBF) Kernel, and XGBoost (XGB).