语义内容在图像融合中的应用研究

Yumei Miao, Yusong Miao
{"title":"语义内容在图像融合中的应用研究","authors":"Yumei Miao, Yusong Miao","doi":"10.1109/AIPR.2003.1284260","DOIUrl":null,"url":null,"abstract":"The diagnostic value of CT (Computed Tomography) checking for encephalic illness is affirmative. For clinical doctors, they are in urgent need of a good approach for this monomodality medical image fusion at an acceptable accuracy, in order to obtain some visual comparison about a patient in normal and pathologic conditions, tracing the development of focus, determining the regimen and so on. Thus is also the purpose of this paper. The usual method is merging images at pixel-level or feature-level. In this paper, we develop a semantic-level fusion technique that is matched with semantic descriptions associated to images. Content-based semantic information can be used on image segmentation and similarity matching image retrieval through prior-knowledge support. Then we apply a weighted complex similarity retrieval algorithm (WK-NN) to implement. Finally, the integrated images with semantic information are presented.","PeriodicalId":176987,"journal":{"name":"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The research of semantic content applied to image fusion\",\"authors\":\"Yumei Miao, Yusong Miao\",\"doi\":\"10.1109/AIPR.2003.1284260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diagnostic value of CT (Computed Tomography) checking for encephalic illness is affirmative. For clinical doctors, they are in urgent need of a good approach for this monomodality medical image fusion at an acceptable accuracy, in order to obtain some visual comparison about a patient in normal and pathologic conditions, tracing the development of focus, determining the regimen and so on. Thus is also the purpose of this paper. The usual method is merging images at pixel-level or feature-level. In this paper, we develop a semantic-level fusion technique that is matched with semantic descriptions associated to images. Content-based semantic information can be used on image segmentation and similarity matching image retrieval through prior-knowledge support. Then we apply a weighted complex similarity retrieval algorithm (WK-NN) to implement. Finally, the integrated images with semantic information are presented.\",\"PeriodicalId\":176987,\"journal\":{\"name\":\"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2003.1284260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2003.1284260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

CT检查对脑病的诊断价值是肯定的。对于临床医生来说,迫切需要一种良好的方法将这种单模医学图像融合到一个可以接受的精度,以便获得患者在正常和病理状态下的一些视觉比较,追踪病灶的发展,确定治疗方案等。这也是本文的目的所在。通常的方法是在像素级或特征级合并图像。在本文中,我们开发了一种与图像相关的语义描述相匹配的语义级融合技术。通过先验知识支持,将基于内容的语义信息用于图像分割和相似匹配图像检索。然后应用加权复相似度检索算法(WK-NN)实现。最后,给出了带有语义信息的综合图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The research of semantic content applied to image fusion
The diagnostic value of CT (Computed Tomography) checking for encephalic illness is affirmative. For clinical doctors, they are in urgent need of a good approach for this monomodality medical image fusion at an acceptable accuracy, in order to obtain some visual comparison about a patient in normal and pathologic conditions, tracing the development of focus, determining the regimen and so on. Thus is also the purpose of this paper. The usual method is merging images at pixel-level or feature-level. In this paper, we develop a semantic-level fusion technique that is matched with semantic descriptions associated to images. Content-based semantic information can be used on image segmentation and similarity matching image retrieval through prior-knowledge support. Then we apply a weighted complex similarity retrieval algorithm (WK-NN) to implement. Finally, the integrated images with semantic information are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信