{"title":"符号和约定","authors":"","doi":"10.1017/9781316227596.014","DOIUrl":null,"url":null,"abstract":"• Rn denotes the Euclidean space of dimension n. Subsets of Rn are viewed as metric spaces using the standard Euclidean distance on Rn. • Mn(R) denotes the real vector space of n× n real matrices with the Euclidean metric, and I denotes the identity matrix in Mn(R). • All rings are associative, with a multiplicative identity. • For any prime number p, Fp denotes the finite field with p elements. • If A and B are sets, then A−B refers to {x ∈ A | x 6∈ B}. • For a ring R, R[x] denotes the polynomial ring in one variable over R, and R[x, y] denotes the polynomial ring in two variables over R.","PeriodicalId":185321,"journal":{"name":"Quantum Gravity and the Functional Renormalization Group","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notation and Conventions\",\"authors\":\"\",\"doi\":\"10.1017/9781316227596.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"• Rn denotes the Euclidean space of dimension n. Subsets of Rn are viewed as metric spaces using the standard Euclidean distance on Rn. • Mn(R) denotes the real vector space of n× n real matrices with the Euclidean metric, and I denotes the identity matrix in Mn(R). • All rings are associative, with a multiplicative identity. • For any prime number p, Fp denotes the finite field with p elements. • If A and B are sets, then A−B refers to {x ∈ A | x 6∈ B}. • For a ring R, R[x] denotes the polynomial ring in one variable over R, and R[x, y] denotes the polynomial ring in two variables over R.\",\"PeriodicalId\":185321,\"journal\":{\"name\":\"Quantum Gravity and the Functional Renormalization Group\",\"volume\":\"237 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Gravity and the Functional Renormalization Group\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/9781316227596.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Gravity and the Functional Renormalization Group","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781316227596.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
•Rn表示维数为n的欧几里得空间。Rn的子集被视为使用Rn上的标准欧几里得距离的度量空间。•Mn(R)表示具有欧氏度规的n× n个实矩阵的实向量空间,I表示Mn(R)中的单位矩阵。•所有环都是结合的,具有乘法恒等式。•对于任意素数p, Fp表示有p个元素的有限域。•若A、B为集合,则A−B表示{x∈A | x 6∈B}。•对于环R, R[x]表示在R上的单变量多项式环,R[x, y]表示在R上的双变量多项式环。
• Rn denotes the Euclidean space of dimension n. Subsets of Rn are viewed as metric spaces using the standard Euclidean distance on Rn. • Mn(R) denotes the real vector space of n× n real matrices with the Euclidean metric, and I denotes the identity matrix in Mn(R). • All rings are associative, with a multiplicative identity. • For any prime number p, Fp denotes the finite field with p elements. • If A and B are sets, then A−B refers to {x ∈ A | x 6∈ B}. • For a ring R, R[x] denotes the polynomial ring in one variable over R, and R[x, y] denotes the polynomial ring in two variables over R.