欠采样技术对多类不平衡数据分类精度的影响

Suwanto Sanjaya, Rahmad Abdillah, Iis Afrianty
{"title":"欠采样技术对多类不平衡数据分类精度的影响","authors":"Suwanto Sanjaya, Rahmad Abdillah, Iis Afrianty","doi":"10.1109/IConEEI55709.2022.9972265","DOIUrl":null,"url":null,"abstract":"Class imbalance can make the performance of a classification technique problematic. The main problem of class imbalance can be solved by using an Under-Sampling technique, namely adjusting the amount of data in the majority class to the minority class (removing some data in the majority class). However, many studies do not explain the impact of the Under-Sampling technique on the performance of classification techniques. Our study uses LVQ3 and K-fold Cross-Validation to prove this issue. LVQ3 is used to classify and k-fold cross-validation to perform classification performance tests. The research parameters used were learning rate (0.00001, 0.0001, 0.001, 0.01 and 0.1), window (0.001 and 0.2), n-prototype (10, 13, 26, 41 and 46), epoch 2000 and epsilon 0.2. The results showed a significant difference in accuracy when using old and new data. This research suggests that the balanced distribution of the data, the experimental setting, and differences in data sampling affect the accuracy. As a result, data not used in the technique becomes useless. However, the data cannot be said to be useless, especially regarding accuracy.","PeriodicalId":382763,"journal":{"name":"2022 3rd International Conference on Electrical Engineering and Informatics (ICon EEI)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of Under-Sampling Techniques on Classification Accuracy in multi-class Imbalance Data\",\"authors\":\"Suwanto Sanjaya, Rahmad Abdillah, Iis Afrianty\",\"doi\":\"10.1109/IConEEI55709.2022.9972265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Class imbalance can make the performance of a classification technique problematic. The main problem of class imbalance can be solved by using an Under-Sampling technique, namely adjusting the amount of data in the majority class to the minority class (removing some data in the majority class). However, many studies do not explain the impact of the Under-Sampling technique on the performance of classification techniques. Our study uses LVQ3 and K-fold Cross-Validation to prove this issue. LVQ3 is used to classify and k-fold cross-validation to perform classification performance tests. The research parameters used were learning rate (0.00001, 0.0001, 0.001, 0.01 and 0.1), window (0.001 and 0.2), n-prototype (10, 13, 26, 41 and 46), epoch 2000 and epsilon 0.2. The results showed a significant difference in accuracy when using old and new data. This research suggests that the balanced distribution of the data, the experimental setting, and differences in data sampling affect the accuracy. As a result, data not used in the technique becomes useless. However, the data cannot be said to be useless, especially regarding accuracy.\",\"PeriodicalId\":382763,\"journal\":{\"name\":\"2022 3rd International Conference on Electrical Engineering and Informatics (ICon EEI)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd International Conference on Electrical Engineering and Informatics (ICon EEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IConEEI55709.2022.9972265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Electrical Engineering and Informatics (ICon EEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConEEI55709.2022.9972265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

类不平衡会使分类技术的性能出现问题。类不平衡的主要问题可以通过使用undersampling技术来解决,即将多数类中的数据量调整到少数类(删除多数类中的一些数据)。然而,许多研究并没有解释欠采样技术对分类技术性能的影响。我们的研究使用LVQ3和K-fold交叉验证来证明这一问题。使用LVQ3进行分类,使用k-fold交叉验证进行分类性能检验。研究参数为学习率(0.00001、0.0001、0.001、0.01和0.1)、窗口(0.001和0.2)、n-原型(10、13、26、41和46)、epoch 2000和epsilon 0.2。结果表明,在使用新旧数据时,准确率有显著差异。本研究表明,数据分布的均衡性、实验设置和数据采样的差异会影响准确性。因此,该技术中未使用的数据变得无用。然而,不能说这些数据是无用的,特别是在准确性方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The impact of Under-Sampling Techniques on Classification Accuracy in multi-class Imbalance Data
Class imbalance can make the performance of a classification technique problematic. The main problem of class imbalance can be solved by using an Under-Sampling technique, namely adjusting the amount of data in the majority class to the minority class (removing some data in the majority class). However, many studies do not explain the impact of the Under-Sampling technique on the performance of classification techniques. Our study uses LVQ3 and K-fold Cross-Validation to prove this issue. LVQ3 is used to classify and k-fold cross-validation to perform classification performance tests. The research parameters used were learning rate (0.00001, 0.0001, 0.001, 0.01 and 0.1), window (0.001 and 0.2), n-prototype (10, 13, 26, 41 and 46), epoch 2000 and epsilon 0.2. The results showed a significant difference in accuracy when using old and new data. This research suggests that the balanced distribution of the data, the experimental setting, and differences in data sampling affect the accuracy. As a result, data not used in the technique becomes useless. However, the data cannot be said to be useless, especially regarding accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信