使用次指数查询的军政府距离近似

Vishnu Iyer, Avishay Tal, Michael Whitmeyer
{"title":"使用次指数查询的军政府距离近似","authors":"Vishnu Iyer, Avishay Tal, Michael Whitmeyer","doi":"10.4230/LIPIcs.CCC.2021.24","DOIUrl":null,"url":null,"abstract":"Leveraging tools of De, Mossel, and Neeman [FOCS, 2019], we show two different results pertaining to the tolerant testing of juntas. Given black-box access to a Boolean function f : {±1}n → {±1}: 1. We give a [EQUATION] query algorithm that distinguishes between functions that are γ-close to k-juntas and (γ + ε)-far from k'-juntas, where [EQUATION]. 2. In the non-relaxed setting, we extend our ideas to give a [EQUATION] (adaptive) query algorithm that distinguishes between functions that are γ-close to k-juntas and (γ + ε)-far from k-juntas. To the best of our knowledge, this is the first subexponential-in-k query algorithm for approximating the distance of f to being a k-junta (previous results of Blais, Canonne, Eden, Levi, and Ron [SODA, 2018] and De, Mossel, and Neeman [FOCS, 2019] required exponentially many queries in k). Our techniques are Fourier analytical and make use of the notion of \"normalized influences\" that was introduced by Talagrand [32].","PeriodicalId":336911,"journal":{"name":"Proceedings of the 36th Computational Complexity Conference","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Junta distance approximation with sub-exponential queries\",\"authors\":\"Vishnu Iyer, Avishay Tal, Michael Whitmeyer\",\"doi\":\"10.4230/LIPIcs.CCC.2021.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leveraging tools of De, Mossel, and Neeman [FOCS, 2019], we show two different results pertaining to the tolerant testing of juntas. Given black-box access to a Boolean function f : {±1}n → {±1}: 1. We give a [EQUATION] query algorithm that distinguishes between functions that are γ-close to k-juntas and (γ + ε)-far from k'-juntas, where [EQUATION]. 2. In the non-relaxed setting, we extend our ideas to give a [EQUATION] (adaptive) query algorithm that distinguishes between functions that are γ-close to k-juntas and (γ + ε)-far from k-juntas. To the best of our knowledge, this is the first subexponential-in-k query algorithm for approximating the distance of f to being a k-junta (previous results of Blais, Canonne, Eden, Levi, and Ron [SODA, 2018] and De, Mossel, and Neeman [FOCS, 2019] required exponentially many queries in k). Our techniques are Fourier analytical and make use of the notion of \\\"normalized influences\\\" that was introduced by Talagrand [32].\",\"PeriodicalId\":336911,\"journal\":{\"name\":\"Proceedings of the 36th Computational Complexity Conference\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 36th Computational Complexity Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2021.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th Computational Complexity Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2021.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

利用De、Mossel和Neeman [FOCS, 2019]的工具,我们展示了与juntas耐受性测试相关的两种不同结果。给定黑盒访问布尔函数f:{±1}n→{±1}:1。我们给出了一个[EQUATION]查询算法来区分γ-接近k'-juntas和(γ + ε)-远离k'-juntas的函数,其中[EQUATION]。2. 在非放松设置中,我们扩展了我们的想法,给出了一个[EQUATION](自适应)查询算法,该算法可以区分γ-接近k-juntas和(γ + ε)-远离k-juntas的函数。据我们所知,这是第一个用于近似f到k-junta的距离的次指数次k查询算法(Blais, Canonne, Eden, Levi, and Ron [SODA, 2018]和De, Mossel, and Neeman [FOCS, 2019]的先前结果需要在k中进行指数次查询)。我们的技术是傅里叶分析,并利用了Talagrand[32]引入的“标准化影响”概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Junta distance approximation with sub-exponential queries
Leveraging tools of De, Mossel, and Neeman [FOCS, 2019], we show two different results pertaining to the tolerant testing of juntas. Given black-box access to a Boolean function f : {±1}n → {±1}: 1. We give a [EQUATION] query algorithm that distinguishes between functions that are γ-close to k-juntas and (γ + ε)-far from k'-juntas, where [EQUATION]. 2. In the non-relaxed setting, we extend our ideas to give a [EQUATION] (adaptive) query algorithm that distinguishes between functions that are γ-close to k-juntas and (γ + ε)-far from k-juntas. To the best of our knowledge, this is the first subexponential-in-k query algorithm for approximating the distance of f to being a k-junta (previous results of Blais, Canonne, Eden, Levi, and Ron [SODA, 2018] and De, Mossel, and Neeman [FOCS, 2019] required exponentially many queries in k). Our techniques are Fourier analytical and make use of the notion of "normalized influences" that was introduced by Talagrand [32].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信