基于em的结构化文档布局分析方法

Francisco Cruz, O. R. Terrades
{"title":"基于em的结构化文档布局分析方法","authors":"Francisco Cruz, O. R. Terrades","doi":"10.1109/ICPR.2014.63","DOIUrl":null,"url":null,"abstract":"In this paper we present a method to perform layout analysis in structured documents. We proposed an EM-based algorithm to fit a set of Gaussian mixtures to the different regions according to the logical distribution along the page. After the convergence, we estimate the final shape of the regions according to the parameters computed for each component of the mixture. We evaluated our method in the task of record detection in a collection of historical structured documents and performed a comparison with other previous works in this task.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"EM-Based Layout Analysis Method for Structured Documents\",\"authors\":\"Francisco Cruz, O. R. Terrades\",\"doi\":\"10.1109/ICPR.2014.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a method to perform layout analysis in structured documents. We proposed an EM-based algorithm to fit a set of Gaussian mixtures to the different regions according to the logical distribution along the page. After the convergence, we estimate the final shape of the regions according to the parameters computed for each component of the mixture. We evaluated our method in the task of record detection in a collection of historical structured documents and performed a comparison with other previous works in this task.\",\"PeriodicalId\":142159,\"journal\":{\"name\":\"2014 22nd International Conference on Pattern Recognition\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2014.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种在结构化文档中进行布局分析的方法。我们提出了一种基于em的算法,根据页面的逻辑分布将一组高斯混合物拟合到不同的区域。收敛后,我们根据计算得到的混合物各组分的参数估计最终的区域形状。我们在历史结构化文档集合中的记录检测任务中评估了我们的方法,并与该任务中的其他先前工作进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EM-Based Layout Analysis Method for Structured Documents
In this paper we present a method to perform layout analysis in structured documents. We proposed an EM-based algorithm to fit a set of Gaussian mixtures to the different regions according to the logical distribution along the page. After the convergence, we estimate the final shape of the regions according to the parameters computed for each component of the mixture. We evaluated our method in the task of record detection in a collection of historical structured documents and performed a comparison with other previous works in this task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信