概率定深电路的确定性仿真

M. Ajtai, A. Wigderson
{"title":"概率定深电路的确定性仿真","authors":"M. Ajtai, A. Wigderson","doi":"10.1109/SFCS.1985.19","DOIUrl":null,"url":null,"abstract":"We explicitly construct, for every integer n and ε ≫ 0, a family of functions (psuedo-random bit generators) fn,ε:{0,1}nε → {0,1}n with the following property: for a random seed, the pseudorandom output \"looks random\" to any polynomial size, constant depth, unbounded fan-in circuit. Moreover, the functions fn,ε themselves can be computed by uniform polynomial size, constant depth circuits. Some (interrelated) consequences of this result are given below. 1) Deterministic simulation of probabilistic algorithms. The constant depth analogues of the probabilistic complexity classes RP and BPP are contained in the deterministic complexity classes DSPACE(nε) and DTIME(2nε) for any ε ≫ 0. 2) Making probabilistic constructions deterministic. Some probablistic constructions of structures that elude explicit constructions can be simulated in the above complexity classes. 3) Approximate counting. The number of satisfying assignments to a (CNF or DNF) formula, if not too small, can be arbitrarily approximated in DSPACE(nε) and DTIME(2nε), for any ε ≫ 0. We also present two results for the special case of depth 2 circuits. They deal, respectively, with finding a satisfying assignment and approximately counting the number of assignments. For example, for 3-CNF formulas with a fixed fraction of satisfying assignmemts, both tasks can be performed in polynomial time!","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":"{\"title\":\"Deterministic simulation of probabilistic constant depth circuits\",\"authors\":\"M. Ajtai, A. Wigderson\",\"doi\":\"10.1109/SFCS.1985.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explicitly construct, for every integer n and ε ≫ 0, a family of functions (psuedo-random bit generators) fn,ε:{0,1}nε → {0,1}n with the following property: for a random seed, the pseudorandom output \\\"looks random\\\" to any polynomial size, constant depth, unbounded fan-in circuit. Moreover, the functions fn,ε themselves can be computed by uniform polynomial size, constant depth circuits. Some (interrelated) consequences of this result are given below. 1) Deterministic simulation of probabilistic algorithms. The constant depth analogues of the probabilistic complexity classes RP and BPP are contained in the deterministic complexity classes DSPACE(nε) and DTIME(2nε) for any ε ≫ 0. 2) Making probabilistic constructions deterministic. Some probablistic constructions of structures that elude explicit constructions can be simulated in the above complexity classes. 3) Approximate counting. The number of satisfying assignments to a (CNF or DNF) formula, if not too small, can be arbitrarily approximated in DSPACE(nε) and DTIME(2nε), for any ε ≫ 0. We also present two results for the special case of depth 2 circuits. They deal, respectively, with finding a satisfying assignment and approximately counting the number of assignments. For example, for 3-CNF formulas with a fixed fraction of satisfying assignmemts, both tasks can be performed in polynomial time!\",\"PeriodicalId\":296739,\"journal\":{\"name\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1985.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1985.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

摘要

对于每一个整数n和ε < 0,我们显式地构造了一个函数族(伪随机比特生成器)fn,ε:{0,1}nε→{0,1}n,具有以下性质:对于一个随机种子,其伪随机输出对于任何多项式大小、定深度、无界扇入电路“看起来是随机的”。此外,函数fn、ε本身可以用等多项式大小、等深度电路来计算。下面给出了这个结果的一些(相互关联的)后果。1)概率算法的确定性仿真。对于任意ε比0,确定性复杂度类DSPACE(nε)和DTIME(2nε)中包含了概率复杂度类RP和BPP的等深度类似物。2)使概率结构具有确定性。在上述复杂性类中,可以模拟一些结构的概率构造,而这些结构无法进行显式构造。3)近似计数。对于任意ε < 0,一个(CNF或DNF)公式的满足赋值的数目,如果不太小,可以在DSPACE(nε)和DTIME(2nε)中任意近似。对于深度2电路的特殊情况,我们也给出了两个结果。它们分别处理找到一个令人满意的任务和近似计算任务的数量。例如,对于具有固定分数的满意分配的3-CNF公式,这两个任务都可以在多项式时间内执行!
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterministic simulation of probabilistic constant depth circuits
We explicitly construct, for every integer n and ε ≫ 0, a family of functions (psuedo-random bit generators) fn,ε:{0,1}nε → {0,1}n with the following property: for a random seed, the pseudorandom output "looks random" to any polynomial size, constant depth, unbounded fan-in circuit. Moreover, the functions fn,ε themselves can be computed by uniform polynomial size, constant depth circuits. Some (interrelated) consequences of this result are given below. 1) Deterministic simulation of probabilistic algorithms. The constant depth analogues of the probabilistic complexity classes RP and BPP are contained in the deterministic complexity classes DSPACE(nε) and DTIME(2nε) for any ε ≫ 0. 2) Making probabilistic constructions deterministic. Some probablistic constructions of structures that elude explicit constructions can be simulated in the above complexity classes. 3) Approximate counting. The number of satisfying assignments to a (CNF or DNF) formula, if not too small, can be arbitrarily approximated in DSPACE(nε) and DTIME(2nε), for any ε ≫ 0. We also present two results for the special case of depth 2 circuits. They deal, respectively, with finding a satisfying assignment and approximately counting the number of assignments. For example, for 3-CNF formulas with a fixed fraction of satisfying assignmemts, both tasks can be performed in polynomial time!
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信