涡轮叶栅二次流与入流湍流换热的数值预测

Y. Kanani, S. Acharya, F. Ames
{"title":"涡轮叶栅二次流与入流湍流换热的数值预测","authors":"Y. Kanani, S. Acharya, F. Ames","doi":"10.1115/GT2020-15654","DOIUrl":null,"url":null,"abstract":"\n Turbine passage secondary flows are studied for a large rounded leading edge airfoil geometry considered in the experimental investigation of Varty et al. (J. Turbomach. 140(2):021010) using high resolution Large Eddy Simulation (LES). The complex nature of secondary flow formation and evolution are affected by the approach boundary layer characteristics, components of pressure gradients tangent and normal to the passage flow, surface curvature, and inflow turbulence. This paper presents a detailed description of the secondary flows and heat transfer in a linear vane cascade at exit chord Reynolds number of 5 × 105 at low and high inflow turbulence. Initial flow turning at the leading edge of the inlet boundary layer leads to a pair of counter-rotating flow circulation in each half of the cross-plane that drive the evolution of the pressure-side and suction side of the near-wall vortices such as the horseshoe and leading edge corner vortex. The passage vortex for the current large leading-edge vane is formed by the amplification of the initially formed circulation closer to the pressure side (PPC) which strengthens and merges with other vortex systems while moving toward the suction side. The predicted suction surface heat transfer shows good agreement with the measurements and properly captures the augmented heat transfer due to the formation and lateral spreading of the secondary flows towards the vane midspan downstream of the vane passage. Effects of various components of the secondary flows on the endwall and vane heat transfer are discussed in detail.","PeriodicalId":147616,"journal":{"name":"Volume 7B: Heat Transfer","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical Predictions of Turbine Cascade Secondary Flows and Heat Transfer With Inflow Turbulence\",\"authors\":\"Y. Kanani, S. Acharya, F. Ames\",\"doi\":\"10.1115/GT2020-15654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Turbine passage secondary flows are studied for a large rounded leading edge airfoil geometry considered in the experimental investigation of Varty et al. (J. Turbomach. 140(2):021010) using high resolution Large Eddy Simulation (LES). The complex nature of secondary flow formation and evolution are affected by the approach boundary layer characteristics, components of pressure gradients tangent and normal to the passage flow, surface curvature, and inflow turbulence. This paper presents a detailed description of the secondary flows and heat transfer in a linear vane cascade at exit chord Reynolds number of 5 × 105 at low and high inflow turbulence. Initial flow turning at the leading edge of the inlet boundary layer leads to a pair of counter-rotating flow circulation in each half of the cross-plane that drive the evolution of the pressure-side and suction side of the near-wall vortices such as the horseshoe and leading edge corner vortex. The passage vortex for the current large leading-edge vane is formed by the amplification of the initially formed circulation closer to the pressure side (PPC) which strengthens and merges with other vortex systems while moving toward the suction side. The predicted suction surface heat transfer shows good agreement with the measurements and properly captures the augmented heat transfer due to the formation and lateral spreading of the secondary flows towards the vane midspan downstream of the vane passage. Effects of various components of the secondary flows on the endwall and vane heat transfer are discussed in detail.\",\"PeriodicalId\":147616,\"journal\":{\"name\":\"Volume 7B: Heat Transfer\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7B: Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2020-15654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7B: Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2020-15654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在Varty等人(J. Turbomach. 140(2):021010)的实验研究中,采用高分辨率大涡模拟(LES)研究了大型圆形前缘翼型的涡轮通道二次流。二次流形成和演化的复杂性受接近边界层特征、通道流动正切和法向压力梯度分量、表面曲率和流入湍流度的影响。本文详细描述了出口弦数为5 × 105的线性叶片叶栅在低湍流和高湍流下的二次流动和换热。入口边界层前缘的初始流动转向导致横截面各半部分形成一对反旋转流动循环,驱动马蹄形涡和前缘角涡等近壁涡的压力侧和吸力侧的演化。当前大型前缘叶片的通道涡是由最初形成的靠近压力侧(PPC)的环流在向吸力侧移动的过程中被放大并与其他涡系统合并而形成的。预测的吸力表面传热与测量结果很好地吻合,并且正确地捕获了由于二次流在叶片通道下游向叶片跨中方向的形成和横向扩散而增加的传热。详细讨论了二次流各组分对端壁和叶片传热的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Predictions of Turbine Cascade Secondary Flows and Heat Transfer With Inflow Turbulence
Turbine passage secondary flows are studied for a large rounded leading edge airfoil geometry considered in the experimental investigation of Varty et al. (J. Turbomach. 140(2):021010) using high resolution Large Eddy Simulation (LES). The complex nature of secondary flow formation and evolution are affected by the approach boundary layer characteristics, components of pressure gradients tangent and normal to the passage flow, surface curvature, and inflow turbulence. This paper presents a detailed description of the secondary flows and heat transfer in a linear vane cascade at exit chord Reynolds number of 5 × 105 at low and high inflow turbulence. Initial flow turning at the leading edge of the inlet boundary layer leads to a pair of counter-rotating flow circulation in each half of the cross-plane that drive the evolution of the pressure-side and suction side of the near-wall vortices such as the horseshoe and leading edge corner vortex. The passage vortex for the current large leading-edge vane is formed by the amplification of the initially formed circulation closer to the pressure side (PPC) which strengthens and merges with other vortex systems while moving toward the suction side. The predicted suction surface heat transfer shows good agreement with the measurements and properly captures the augmented heat transfer due to the formation and lateral spreading of the secondary flows towards the vane midspan downstream of the vane passage. Effects of various components of the secondary flows on the endwall and vane heat transfer are discussed in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信