外推核岭回归的模型选择

A. Tanaka, Masanari Nakamura, H. Imai
{"title":"外推核岭回归的模型选择","authors":"A. Tanaka, Masanari Nakamura, H. Imai","doi":"10.1109/mlsp52302.2021.9596089","DOIUrl":null,"url":null,"abstract":"Model selection of the kernel ridge regression is discussed in this paper. The cross-validation approach is one of popular and powerful model selection techniques for many machine learning methods including the kernel ridge regression. However, the cross-validation approach is not suitable for extrapolation scenarios due to its principle. In this paper, we propose a novel model selection criterion for the kernel ridge regression which is applicable to extrapolation scenarios. The key idea of the proposed criterion is direct evaluation of the generalization error, defined in a certain reproducing kernel Hilbert spaces, which is feasible under a certain assumption on a set of kernel candidates.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Selection of Kernel Ridge Regression for Extrapolation\",\"authors\":\"A. Tanaka, Masanari Nakamura, H. Imai\",\"doi\":\"10.1109/mlsp52302.2021.9596089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model selection of the kernel ridge regression is discussed in this paper. The cross-validation approach is one of popular and powerful model selection techniques for many machine learning methods including the kernel ridge regression. However, the cross-validation approach is not suitable for extrapolation scenarios due to its principle. In this paper, we propose a novel model selection criterion for the kernel ridge regression which is applicable to extrapolation scenarios. The key idea of the proposed criterion is direct evaluation of the generalization error, defined in a certain reproducing kernel Hilbert spaces, which is feasible under a certain assumption on a set of kernel candidates.\",\"PeriodicalId\":156116,\"journal\":{\"name\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mlsp52302.2021.9596089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了核脊回归的模型选择问题。交叉验证方法是包括核脊回归在内的许多机器学习方法中流行且强大的模型选择技术之一。然而,由于交叉验证方法的原理,它不适合外推场景。本文提出了一种适用于外推情景的核脊回归模型选择准则。该准则的核心思想是直接评估泛化误差,泛化误差定义在一定的再现核希尔伯特空间中,在一组候选核的特定假设下是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Selection of Kernel Ridge Regression for Extrapolation
Model selection of the kernel ridge regression is discussed in this paper. The cross-validation approach is one of popular and powerful model selection techniques for many machine learning methods including the kernel ridge regression. However, the cross-validation approach is not suitable for extrapolation scenarios due to its principle. In this paper, we propose a novel model selection criterion for the kernel ridge regression which is applicable to extrapolation scenarios. The key idea of the proposed criterion is direct evaluation of the generalization error, defined in a certain reproducing kernel Hilbert spaces, which is feasible under a certain assumption on a set of kernel candidates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信