{"title":"微旋转流室快速形成胶原凝胶介导的异质球体","authors":"H. Ota, T. Kodama, M. Yamato, T. Okano, N. Miki","doi":"10.1109/MHS.2011.6102166","DOIUrl":null,"url":null,"abstract":"Spheroids that are formed from aggregated cells enhance biological function compared to monolayer culture. In particular, hetero-spheroids composed of different types of cells, such as hepatocytes and endothelial cells, express tissue specific functions at a high level, which is advantageous for more precise drug screening and biological research. In this study, we propose rapid formation of three-dimensional hetero-spheroids consisting of hepatocytes and endothelial cells using micro-rotation flow. The hepatocytes are coated with collagen gel layers less than 200 nm thick to increase adhesion strength between hepatocytes and endothelial cells. Gel-coated hepatocytes and endothelial cells are collected in an array by micro-rotational flow and collagen-gel coating, thereby forming hetero-spheroids within 2 min. This array allowed the size of the three-dimensional spheroids to be hydrodynamically controlled by varying the cell density of the medium without altering the device geometry with standard deviations of less than 19%. The proposed microfulidic device, with its capacity of rapidly forming size-controlled hetero-cell aggregates, will offer an efficient experimental platform for heterospheroid study that will contribute to drug screening and regenerative medicine.","PeriodicalId":286457,"journal":{"name":"2011 International Symposium on Micro-NanoMechatronics and Human Science","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Micro-rotation flow chamber rapidly forming collagen gel-mediated hetero-spheroids\",\"authors\":\"H. Ota, T. Kodama, M. Yamato, T. Okano, N. Miki\",\"doi\":\"10.1109/MHS.2011.6102166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spheroids that are formed from aggregated cells enhance biological function compared to monolayer culture. In particular, hetero-spheroids composed of different types of cells, such as hepatocytes and endothelial cells, express tissue specific functions at a high level, which is advantageous for more precise drug screening and biological research. In this study, we propose rapid formation of three-dimensional hetero-spheroids consisting of hepatocytes and endothelial cells using micro-rotation flow. The hepatocytes are coated with collagen gel layers less than 200 nm thick to increase adhesion strength between hepatocytes and endothelial cells. Gel-coated hepatocytes and endothelial cells are collected in an array by micro-rotational flow and collagen-gel coating, thereby forming hetero-spheroids within 2 min. This array allowed the size of the three-dimensional spheroids to be hydrodynamically controlled by varying the cell density of the medium without altering the device geometry with standard deviations of less than 19%. The proposed microfulidic device, with its capacity of rapidly forming size-controlled hetero-cell aggregates, will offer an efficient experimental platform for heterospheroid study that will contribute to drug screening and regenerative medicine.\",\"PeriodicalId\":286457,\"journal\":{\"name\":\"2011 International Symposium on Micro-NanoMechatronics and Human Science\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Symposium on Micro-NanoMechatronics and Human Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MHS.2011.6102166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Symposium on Micro-NanoMechatronics and Human Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2011.6102166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spheroids that are formed from aggregated cells enhance biological function compared to monolayer culture. In particular, hetero-spheroids composed of different types of cells, such as hepatocytes and endothelial cells, express tissue specific functions at a high level, which is advantageous for more precise drug screening and biological research. In this study, we propose rapid formation of three-dimensional hetero-spheroids consisting of hepatocytes and endothelial cells using micro-rotation flow. The hepatocytes are coated with collagen gel layers less than 200 nm thick to increase adhesion strength between hepatocytes and endothelial cells. Gel-coated hepatocytes and endothelial cells are collected in an array by micro-rotational flow and collagen-gel coating, thereby forming hetero-spheroids within 2 min. This array allowed the size of the three-dimensional spheroids to be hydrodynamically controlled by varying the cell density of the medium without altering the device geometry with standard deviations of less than 19%. The proposed microfulidic device, with its capacity of rapidly forming size-controlled hetero-cell aggregates, will offer an efficient experimental platform for heterospheroid study that will contribute to drug screening and regenerative medicine.