基于改进SIFT特征的视频图像检索

Hui Gao, Yuncheng Du, Yuqin Li, Shuicai Shi
{"title":"基于改进SIFT特征的视频图像检索","authors":"Hui Gao, Yuncheng Du, Yuqin Li, Shuicai Shi","doi":"10.1109/IWISA.2010.5473328","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm based on SIFT features. It calculates key points in the image and extracts the feature of the image by calculating the key points' orientation and modulus of the gradient. The similarity between two images is computed using Euclidean distance. The experiment shows that the feature is invariant to image scaling translation, rotation, and partly invariant to illumination changes and has a certain affine invariance. It is better than the color feature in the video image retrieval.","PeriodicalId":298764,"journal":{"name":"2010 2nd International Workshop on Intelligent Systems and Applications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Video Image Retrieval Based on Improved SIFT Features\",\"authors\":\"Hui Gao, Yuncheng Du, Yuqin Li, Shuicai Shi\",\"doi\":\"10.1109/IWISA.2010.5473328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm based on SIFT features. It calculates key points in the image and extracts the feature of the image by calculating the key points' orientation and modulus of the gradient. The similarity between two images is computed using Euclidean distance. The experiment shows that the feature is invariant to image scaling translation, rotation, and partly invariant to illumination changes and has a certain affine invariance. It is better than the color feature in the video image retrieval.\",\"PeriodicalId\":298764,\"journal\":{\"name\":\"2010 2nd International Workshop on Intelligent Systems and Applications\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWISA.2010.5473328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2010.5473328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于SIFT特征的算法。它计算图像中的关键点,通过计算关键点的方向和梯度模量来提取图像的特征。利用欧氏距离计算两幅图像之间的相似度。实验表明,该特征对图像缩放、平移、旋转不变性,对光照变化部分不变性,具有一定的仿射不变性。它在视频图像检索中优于颜色特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video Image Retrieval Based on Improved SIFT Features
This paper presents an algorithm based on SIFT features. It calculates key points in the image and extracts the feature of the image by calculating the key points' orientation and modulus of the gradient. The similarity between two images is computed using Euclidean distance. The experiment shows that the feature is invariant to image scaling translation, rotation, and partly invariant to illumination changes and has a certain affine invariance. It is better than the color feature in the video image retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信