多维无偏子空间聚类

I. Assent, Ralph Krieger, Emmanuel Müller, T. Seidl
{"title":"多维无偏子空间聚类","authors":"I. Assent, Ralph Krieger, Emmanuel Müller, T. Seidl","doi":"10.1109/ICDM.2007.49","DOIUrl":null,"url":null,"abstract":"To gain insight into today's large data resources, data mining provides automatic aggregation techniques. Clustering aims at grouping data such that objects within groups are similar while objects in different groups are dissimilar. In scenarios with many attributes or with noise, clusters are often hidden in subspaces of the data and do not show up in the full dimensional space. For these applications, subspace clustering methods aim at detecting clusters in any sub- space. Existing subspace clustering approaches fall prey to an effect we call dimensionality bias. As dimensionality of subspaces varies, approaches which do not take this effect into account fail to separate clusters from noise. We give a formal definition of dimensionality bias and analyze consequences for subspace clustering. A dimensionality unbiased subspace clustering (DUSC) definition based on statistical foundations is proposed. In thorough experiments on synthetic and real world data, we show that our approach outperforms existing subspace clustering algorithms.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":"{\"title\":\"DUSC: Dimensionality Unbiased Subspace Clustering\",\"authors\":\"I. Assent, Ralph Krieger, Emmanuel Müller, T. Seidl\",\"doi\":\"10.1109/ICDM.2007.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To gain insight into today's large data resources, data mining provides automatic aggregation techniques. Clustering aims at grouping data such that objects within groups are similar while objects in different groups are dissimilar. In scenarios with many attributes or with noise, clusters are often hidden in subspaces of the data and do not show up in the full dimensional space. For these applications, subspace clustering methods aim at detecting clusters in any sub- space. Existing subspace clustering approaches fall prey to an effect we call dimensionality bias. As dimensionality of subspaces varies, approaches which do not take this effect into account fail to separate clusters from noise. We give a formal definition of dimensionality bias and analyze consequences for subspace clustering. A dimensionality unbiased subspace clustering (DUSC) definition based on statistical foundations is proposed. In thorough experiments on synthetic and real world data, we show that our approach outperforms existing subspace clustering algorithms.\",\"PeriodicalId\":233758,\"journal\":{\"name\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"142\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2007.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 142

摘要

为了深入了解当今的大型数据资源,数据挖掘提供了自动聚合技术。聚类的目的是对数据进行分组,使组内的对象相似,而组外的对象不同。在具有许多属性或有噪声的场景中,聚类通常隐藏在数据的子空间中,而不会显示在全维空间中。对于这些应用,子空间聚类方法旨在检测任意子空间中的聚类。现有的子空间聚类方法容易受到我们称之为维度偏差的影响。随着子空间维度的变化,不考虑这种影响的方法无法将聚类从噪声中分离出来。给出了维度偏差的形式化定义,并分析了子空间聚类的后果。提出了一种基于统计基础的多维无偏子空间聚类(DUSC)定义。在对合成数据和真实世界数据的深入实验中,我们表明我们的方法优于现有的子空间聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DUSC: Dimensionality Unbiased Subspace Clustering
To gain insight into today's large data resources, data mining provides automatic aggregation techniques. Clustering aims at grouping data such that objects within groups are similar while objects in different groups are dissimilar. In scenarios with many attributes or with noise, clusters are often hidden in subspaces of the data and do not show up in the full dimensional space. For these applications, subspace clustering methods aim at detecting clusters in any sub- space. Existing subspace clustering approaches fall prey to an effect we call dimensionality bias. As dimensionality of subspaces varies, approaches which do not take this effect into account fail to separate clusters from noise. We give a formal definition of dimensionality bias and analyze consequences for subspace clustering. A dimensionality unbiased subspace clustering (DUSC) definition based on statistical foundations is proposed. In thorough experiments on synthetic and real world data, we show that our approach outperforms existing subspace clustering algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信