用情绪转变预测来理解推特用户行为

Aditya Mogadala, Vasudeva Varma
{"title":"用情绪转变预测来理解推特用户行为","authors":"Aditya Mogadala, Vasudeva Varma","doi":"10.1145/2390131.2390145","DOIUrl":null,"url":null,"abstract":"Human moods continuously change over time. Tracking moods can provide important information about psychological and health behavior of an individual. Also, history of mood information can be used to predict the future moods of individuals. In this paper, we try to predict the mood transition of a Twitter user by regression analysis on the tweets posted over twitter time line. Initially, user tweets are automatically labeled with mood labels from time 0 to t-1. It is then used to predict user mood transition information at time t. Experiments show that SVM regression attained less root-mean-square error compared to other regression approaches for mood transition prediction.","PeriodicalId":352894,"journal":{"name":"DUBMMSM '12","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Twitter user behavior understanding with mood transition prediction\",\"authors\":\"Aditya Mogadala, Vasudeva Varma\",\"doi\":\"10.1145/2390131.2390145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human moods continuously change over time. Tracking moods can provide important information about psychological and health behavior of an individual. Also, history of mood information can be used to predict the future moods of individuals. In this paper, we try to predict the mood transition of a Twitter user by regression analysis on the tweets posted over twitter time line. Initially, user tweets are automatically labeled with mood labels from time 0 to t-1. It is then used to predict user mood transition information at time t. Experiments show that SVM regression attained less root-mean-square error compared to other regression approaches for mood transition prediction.\",\"PeriodicalId\":352894,\"journal\":{\"name\":\"DUBMMSM '12\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DUBMMSM '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2390131.2390145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DUBMMSM '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390131.2390145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

人类的情绪会随着时间不断变化。跟踪情绪可以提供关于个人心理和健康行为的重要信息。此外,情绪信息的历史可以用来预测个人未来的情绪。在本文中,我们试图通过回归分析Twitter时间线上发布的推文来预测Twitter用户的情绪转变。最初,从时间0到t-1,用户推文被自动标记为情绪标签。然后将其用于预测时间t的用户情绪转移信息。实验表明,与其他回归方法相比,SVM回归在情绪转移预测方面获得了更小的均方根误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twitter user behavior understanding with mood transition prediction
Human moods continuously change over time. Tracking moods can provide important information about psychological and health behavior of an individual. Also, history of mood information can be used to predict the future moods of individuals. In this paper, we try to predict the mood transition of a Twitter user by regression analysis on the tweets posted over twitter time line. Initially, user tweets are automatically labeled with mood labels from time 0 to t-1. It is then used to predict user mood transition information at time t. Experiments show that SVM regression attained less root-mean-square error compared to other regression approaches for mood transition prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信