基于深度学习技术的光伏电池异常分类

Ban Jabbar Aljazairy, Mesut Cevik
{"title":"基于深度学习技术的光伏电池异常分类","authors":"Ban Jabbar Aljazairy, Mesut Cevik","doi":"10.1109/ICAIoT57170.2022.10121875","DOIUrl":null,"url":null,"abstract":"In recent years, solar photovoltaic (PV) systems have seen widespread use in the field of environmentally friendly energy harvesting. Additionally, the rate at which units reach the end of their useful life cycle is increasing. Heavy metals like lead, tin, and cadmium can be found in solar modules and cause environmental damage. Regular inspections and maintenance for your solar modules are essential to extending their useful life, cutting down on energy waste, and keeping the environment safe. This paper proposes a system that uses PV cell electroluminescence (EL) and deep learning techniques to efficiently screen for and categorize solar modules that exhibit anomalous behavior. Deep neural networks can accurately predict anomalies and classify types of anomalies. Using PV cell electroluminescence, we propose convolution neural network techniques based on residual network architecture and ensemble technology to accurately predict and classify anomalous solar modules.","PeriodicalId":297735,"journal":{"name":"2022 International Conference on Artificial Intelligence of Things (ICAIoT)","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photovoltaic Cells Anomaly Classification Using Deep Learning Techniques\",\"authors\":\"Ban Jabbar Aljazairy, Mesut Cevik\",\"doi\":\"10.1109/ICAIoT57170.2022.10121875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, solar photovoltaic (PV) systems have seen widespread use in the field of environmentally friendly energy harvesting. Additionally, the rate at which units reach the end of their useful life cycle is increasing. Heavy metals like lead, tin, and cadmium can be found in solar modules and cause environmental damage. Regular inspections and maintenance for your solar modules are essential to extending their useful life, cutting down on energy waste, and keeping the environment safe. This paper proposes a system that uses PV cell electroluminescence (EL) and deep learning techniques to efficiently screen for and categorize solar modules that exhibit anomalous behavior. Deep neural networks can accurately predict anomalies and classify types of anomalies. Using PV cell electroluminescence, we propose convolution neural network techniques based on residual network architecture and ensemble technology to accurately predict and classify anomalous solar modules.\",\"PeriodicalId\":297735,\"journal\":{\"name\":\"2022 International Conference on Artificial Intelligence of Things (ICAIoT)\",\"volume\":\"216 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Artificial Intelligence of Things (ICAIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIoT57170.2022.10121875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Artificial Intelligence of Things (ICAIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIoT57170.2022.10121875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,太阳能光伏(PV)系统在环保能源收集领域得到了广泛的应用。此外,设备达到其使用寿命周期终点的速度正在增加。铅、锡和镉等重金属可以在太阳能组件中找到,并造成环境破坏。定期检查和维护太阳能组件对于延长其使用寿命,减少能源浪费和保护环境安全至关重要。本文提出了一种使用光伏电池电致发光(EL)和深度学习技术来有效筛选和分类表现出异常行为的太阳能组件的系统。深度神经网络可以准确地预测异常并对异常类型进行分类。利用光伏电池的电致发光,我们提出了基于残差网络结构和集成技术的卷积神经网络技术来准确预测和分类异常太阳能组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photovoltaic Cells Anomaly Classification Using Deep Learning Techniques
In recent years, solar photovoltaic (PV) systems have seen widespread use in the field of environmentally friendly energy harvesting. Additionally, the rate at which units reach the end of their useful life cycle is increasing. Heavy metals like lead, tin, and cadmium can be found in solar modules and cause environmental damage. Regular inspections and maintenance for your solar modules are essential to extending their useful life, cutting down on energy waste, and keeping the environment safe. This paper proposes a system that uses PV cell electroluminescence (EL) and deep learning techniques to efficiently screen for and categorize solar modules that exhibit anomalous behavior. Deep neural networks can accurately predict anomalies and classify types of anomalies. Using PV cell electroluminescence, we propose convolution neural network techniques based on residual network architecture and ensemble technology to accurately predict and classify anomalous solar modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信