并行gpu加速尖峰排序

Ian Schofield, A. Alimohammad
{"title":"并行gpu加速尖峰排序","authors":"Ian Schofield, A. Alimohammad","doi":"10.1109/CCECE.2019.8861978","DOIUrl":null,"url":null,"abstract":"A neural spike sorting system has been modeled and implemented using a massively-parallel graphics processing unit (GPU). The spike sorting software consists of three stages: spike detection, feature detection, and clustering developed utilizing algorithms suitable for masssively parallel GPU architectures. The spike sorting system was developed using software engineering principles of portability and maintainability with the goal of determining achievable performance speedup over the same software implemented in MATLAB on a multi-core processor. We consider the challenges of converting multiple-unit neural activity into single-unit activity suitable for brain-machine interfacing (BMI) using spike sorting algorithms.","PeriodicalId":352860,"journal":{"name":"2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parallel GPU-Accelerated Spike Sorting\",\"authors\":\"Ian Schofield, A. Alimohammad\",\"doi\":\"10.1109/CCECE.2019.8861978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A neural spike sorting system has been modeled and implemented using a massively-parallel graphics processing unit (GPU). The spike sorting software consists of three stages: spike detection, feature detection, and clustering developed utilizing algorithms suitable for masssively parallel GPU architectures. The spike sorting system was developed using software engineering principles of portability and maintainability with the goal of determining achievable performance speedup over the same software implemented in MATLAB on a multi-core processor. We consider the challenges of converting multiple-unit neural activity into single-unit activity suitable for brain-machine interfacing (BMI) using spike sorting algorithms.\",\"PeriodicalId\":352860,\"journal\":{\"name\":\"2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.2019.8861978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2019.8861978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用大规模并行图形处理单元(GPU)对神经脉冲分类系统进行了建模和实现。尖峰排序软件包括三个阶段:尖峰检测,特征检测,以及利用适合大规模并行GPU架构的算法开发的聚类。尖峰分类系统是利用可移植性和可维护性的软件工程原理开发的,其目标是确定在多核处理器上用MATLAB实现的相同软件上可实现的性能加速。我们考虑了使用尖峰排序算法将多单元神经活动转换为适合脑机接口(BMI)的单单元活动的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel GPU-Accelerated Spike Sorting
A neural spike sorting system has been modeled and implemented using a massively-parallel graphics processing unit (GPU). The spike sorting software consists of three stages: spike detection, feature detection, and clustering developed utilizing algorithms suitable for masssively parallel GPU architectures. The spike sorting system was developed using software engineering principles of portability and maintainability with the goal of determining achievable performance speedup over the same software implemented in MATLAB on a multi-core processor. We consider the challenges of converting multiple-unit neural activity into single-unit activity suitable for brain-machine interfacing (BMI) using spike sorting algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信