全向移动机器人最优轨迹跟踪控制

M. Galicki, M. Banaszkiewicz
{"title":"全向移动机器人最优轨迹跟踪控制","authors":"M. Galicki, M. Banaszkiewicz","doi":"10.1109/RoMoCo.2019.8787377","DOIUrl":null,"url":null,"abstract":"In the present work, a new task space nonsingular terminal sliding mode (TSM) manifold defined by non-linear integral equation of the first order with respect to the task tracking error and a kind of computed torque method are introduced to control four mecanum wheeled mobile robot (FMWMR). On account of the full rank of the Jacobian matrix of the omni-directional holonomic mechanism, the proposed control scheme is shown to be globally finite-time stable despite uncertain dynamic equations and (globally) unbounded disturbances acting on the FMWMR. Moreover, the proposed control law provides (locally) optimal solution. The numerical simulations carried out for a youBot platform with four mecanum wheels illustrate both the performance of the proposed control scheme and simultaneously its minimizing property for some practically useful objective function.","PeriodicalId":415070,"journal":{"name":"2019 12th International Workshop on Robot Motion and Control (RoMoCo)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimal trajectory tracking control of omni-directional mobile robots\",\"authors\":\"M. Galicki, M. Banaszkiewicz\",\"doi\":\"10.1109/RoMoCo.2019.8787377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, a new task space nonsingular terminal sliding mode (TSM) manifold defined by non-linear integral equation of the first order with respect to the task tracking error and a kind of computed torque method are introduced to control four mecanum wheeled mobile robot (FMWMR). On account of the full rank of the Jacobian matrix of the omni-directional holonomic mechanism, the proposed control scheme is shown to be globally finite-time stable despite uncertain dynamic equations and (globally) unbounded disturbances acting on the FMWMR. Moreover, the proposed control law provides (locally) optimal solution. The numerical simulations carried out for a youBot platform with four mecanum wheels illustrate both the performance of the proposed control scheme and simultaneously its minimizing property for some practically useful objective function.\",\"PeriodicalId\":415070,\"journal\":{\"name\":\"2019 12th International Workshop on Robot Motion and Control (RoMoCo)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 12th International Workshop on Robot Motion and Control (RoMoCo)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RoMoCo.2019.8787377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th International Workshop on Robot Motion and Control (RoMoCo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoMoCo.2019.8787377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于任务跟踪误差的一阶非线性积分方程定义的任务空间非奇异终端滑模流形和一种计算力矩方法来控制四机构轮式移动机器人(FMWMR)。由于全向完整机构的雅可比矩阵是满秩的,该控制方案在不确定动力学方程和(全局)无界扰动作用下是全局有限时间稳定的。此外,所提出的控制律提供了(局部)最优解。对带有四个机械轮的youBot平台进行了数值仿真,验证了所提出的控制方案的性能,同时也证明了它对一些实际有用的目标函数具有最小化的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal trajectory tracking control of omni-directional mobile robots
In the present work, a new task space nonsingular terminal sliding mode (TSM) manifold defined by non-linear integral equation of the first order with respect to the task tracking error and a kind of computed torque method are introduced to control four mecanum wheeled mobile robot (FMWMR). On account of the full rank of the Jacobian matrix of the omni-directional holonomic mechanism, the proposed control scheme is shown to be globally finite-time stable despite uncertain dynamic equations and (globally) unbounded disturbances acting on the FMWMR. Moreover, the proposed control law provides (locally) optimal solution. The numerical simulations carried out for a youBot platform with four mecanum wheels illustrate both the performance of the proposed control scheme and simultaneously its minimizing property for some practically useful objective function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信