采用混合神经网络/遗传算法体系结构模拟飞行控制

A. Langley, S. A. Barton, A. Markov
{"title":"采用混合神经网络/遗传算法体系结构模拟飞行控制","authors":"A. Langley, S. A. Barton, A. Markov","doi":"10.1109/ETD.1995.403478","DOIUrl":null,"url":null,"abstract":"A controller for an agile, high-subsonic autonomous flight vehicle, incorporating neural network and genetic algorithm techniques, is presented. Simulated flight results for nominal and off-nominal vehicle configurations are reported. The results show that an inverse dynamic model neural network can offer better tracking performance and greater robustness than a conventional linear controller. However, the genetic algorithm technique employed here was found to offer no significant improvement in controller performance.<<ETX>>","PeriodicalId":302763,"journal":{"name":"Proceedings Electronic Technology Directions to the Year 2000","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simulated flight control using a hybrid neural network/genetic algorithm architecture\",\"authors\":\"A. Langley, S. A. Barton, A. Markov\",\"doi\":\"10.1109/ETD.1995.403478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A controller for an agile, high-subsonic autonomous flight vehicle, incorporating neural network and genetic algorithm techniques, is presented. Simulated flight results for nominal and off-nominal vehicle configurations are reported. The results show that an inverse dynamic model neural network can offer better tracking performance and greater robustness than a conventional linear controller. However, the genetic algorithm technique employed here was found to offer no significant improvement in controller performance.<<ETX>>\",\"PeriodicalId\":302763,\"journal\":{\"name\":\"Proceedings Electronic Technology Directions to the Year 2000\",\"volume\":\"191 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Electronic Technology Directions to the Year 2000\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETD.1995.403478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Electronic Technology Directions to the Year 2000","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETD.1995.403478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种结合神经网络和遗传算法的敏捷高亚音速自主飞行器控制器。报告了标称和非标称飞行器配置的模拟飞行结果。结果表明,与传统的线性控制器相比,逆动态模型神经网络具有更好的跟踪性能和鲁棒性。然而,本文采用的遗传算法技术在控制器性能方面没有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulated flight control using a hybrid neural network/genetic algorithm architecture
A controller for an agile, high-subsonic autonomous flight vehicle, incorporating neural network and genetic algorithm techniques, is presented. Simulated flight results for nominal and off-nominal vehicle configurations are reported. The results show that an inverse dynamic model neural network can offer better tracking performance and greater robustness than a conventional linear controller. However, the genetic algorithm technique employed here was found to offer no significant improvement in controller performance.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信