一种基于模糊图论聚类的分割新方法

S. Liu, J. Wang, Hong Wang, Ling Zou
{"title":"一种基于模糊图论聚类的分割新方法","authors":"S. Liu, J. Wang, Hong Wang, Ling Zou","doi":"10.1109/CCPR.2009.5344095","DOIUrl":null,"url":null,"abstract":"Aiming at the limitation of traditional graph-theory clustering method in the process of image segmentation, a new segmentation approach is proposed, which uses fuzzy similarity relationship to weight the edges while a complete graph is constituted. And fuzzy maximum spanning tree is used to clustering. Thus the traditional graph-theory clustering method is improved as the fuzzy graph-theory clustering method. Use the local mean and local variance to construct bivector, define the pixel's local mean and variance vector., then get the fuxxy similarity relationship of each pixel in the picture sequence. Experiments are conducted on two real pictures by MATLAB. Results show that different effects can be get by changing the parameter. And the flexibility is better than other contrast methods'.","PeriodicalId":354468,"journal":{"name":"2009 Chinese Conference on Pattern Recognition","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Segmentation Approach Based on Fuzzy Graph-Theory Clustering\",\"authors\":\"S. Liu, J. Wang, Hong Wang, Ling Zou\",\"doi\":\"10.1109/CCPR.2009.5344095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the limitation of traditional graph-theory clustering method in the process of image segmentation, a new segmentation approach is proposed, which uses fuzzy similarity relationship to weight the edges while a complete graph is constituted. And fuzzy maximum spanning tree is used to clustering. Thus the traditional graph-theory clustering method is improved as the fuzzy graph-theory clustering method. Use the local mean and local variance to construct bivector, define the pixel's local mean and variance vector., then get the fuxxy similarity relationship of each pixel in the picture sequence. Experiments are conducted on two real pictures by MATLAB. Results show that different effects can be get by changing the parameter. And the flexibility is better than other contrast methods'.\",\"PeriodicalId\":354468,\"journal\":{\"name\":\"2009 Chinese Conference on Pattern Recognition\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2009.5344095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2009.5344095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对传统图论聚类方法在图像分割过程中的局限性,提出了一种新的图像分割方法,在构造完全图的同时,利用模糊相似关系对边缘进行加权。采用模糊最大生成树进行聚类。因此,将传统的图论聚类方法改进为模糊图论聚类方法。利用局部均值和局部方差构造双向量,定义像素的局部均值和方差向量。,然后得到图像序列中各像素点的模糊相似关系。利用MATLAB对两幅真实图片进行了实验。结果表明,通过改变参数可以获得不同的效果。该方法的灵活性优于其他对比方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Segmentation Approach Based on Fuzzy Graph-Theory Clustering
Aiming at the limitation of traditional graph-theory clustering method in the process of image segmentation, a new segmentation approach is proposed, which uses fuzzy similarity relationship to weight the edges while a complete graph is constituted. And fuzzy maximum spanning tree is used to clustering. Thus the traditional graph-theory clustering method is improved as the fuzzy graph-theory clustering method. Use the local mean and local variance to construct bivector, define the pixel's local mean and variance vector., then get the fuxxy similarity relationship of each pixel in the picture sequence. Experiments are conducted on two real pictures by MATLAB. Results show that different effects can be get by changing the parameter. And the flexibility is better than other contrast methods'.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信