字符种类的辛分辨率

G. Bellamy, T. Schedler
{"title":"字符种类的辛分辨率","authors":"G. Bellamy, T. Schedler","doi":"10.2140/gt.2023.27.51","DOIUrl":null,"url":null,"abstract":"In this article, we consider the $G$-character variety of a compact Riemann surface of genus $g > 0$, when $G$ is $\\mathrm{SL}(n,\\mathbb{C})$ or $\\mathrm{GL}(n,\\mathbb{C})$. We show that these varieties are symplectic singularities and classify when they admit symplectic resolutions: they do when $g = 1$ or $n = 1$ or $(g,n)=(2,2)$.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Symplectic resolutions of character varieties\",\"authors\":\"G. Bellamy, T. Schedler\",\"doi\":\"10.2140/gt.2023.27.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we consider the $G$-character variety of a compact Riemann surface of genus $g > 0$, when $G$ is $\\\\mathrm{SL}(n,\\\\mathbb{C})$ or $\\\\mathrm{GL}(n,\\\\mathbb{C})$. We show that these varieties are symplectic singularities and classify when they admit symplectic resolutions: they do when $g = 1$ or $n = 1$ or $(g,n)=(2,2)$.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2023.27.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们考虑了$G > 0$的紧黎曼曲面的$G$-字符变化,当$G$为$\ mathm {SL}(n,\mathbb{C})$或$\ mathm {GL}(n,\mathbb{C})$时。我们证明了这些变体是辛奇异点,当它们承认辛分解时它们是有分类的:当$g = 1$或$n = 1$或$(g,n)=(2,2)$时它们是有分类的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symplectic resolutions of character varieties
In this article, we consider the $G$-character variety of a compact Riemann surface of genus $g > 0$, when $G$ is $\mathrm{SL}(n,\mathbb{C})$ or $\mathrm{GL}(n,\mathbb{C})$. We show that these varieties are symplectic singularities and classify when they admit symplectic resolutions: they do when $g = 1$ or $n = 1$ or $(g,n)=(2,2)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信