概述

L. Tu
{"title":"概述","authors":"L. Tu","doi":"10.23943/princeton/9780691191751.003.0001","DOIUrl":null,"url":null,"abstract":"This chapter provides an overview of equivariant cohomology. Cohomology in any of its various forms is one of the most important inventions of the twentieth century. A functor from topological spaces to rings, cohomology turns a geometric problem into an easier algebraic problem. Equivariant cohomology is a cohomology theory that takes into account the symmetries of a space. Many topological and geometrical quantities can be expressed as integrals on a manifold. Integrals are vitally important in mathematics. However, they are also rather difficult to compute. When a manifold has symmetries, as expressed by a group action, in many cases the localization formula in equivariant cohomology computes the integral as a finite sum over the fixed points of the action, providing a powerful computational tool.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overview\",\"authors\":\"L. Tu\",\"doi\":\"10.23943/princeton/9780691191751.003.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter provides an overview of equivariant cohomology. Cohomology in any of its various forms is one of the most important inventions of the twentieth century. A functor from topological spaces to rings, cohomology turns a geometric problem into an easier algebraic problem. Equivariant cohomology is a cohomology theory that takes into account the symmetries of a space. Many topological and geometrical quantities can be expressed as integrals on a manifold. Integrals are vitally important in mathematics. However, they are also rather difficult to compute. When a manifold has symmetries, as expressed by a group action, in many cases the localization formula in equivariant cohomology computes the integral as a finite sum over the fixed points of the action, providing a powerful computational tool.\",\"PeriodicalId\":272846,\"journal\":{\"name\":\"Introductory Lectures on Equivariant Cohomology\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory Lectures on Equivariant Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23943/princeton/9780691191751.003.0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23943/princeton/9780691191751.003.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章概述了等变上同调。任何形式的上同调都是20世纪最重要的发明之一。一个从拓扑空间到环的函子,上同调把一个几何问题变成了一个更容易的代数问题。等变上同调是一种考虑了空间对称性的上同调理论。许多拓扑和几何量可以表示为流形上的积分。积分在数学中是非常重要的。然而,它们也很难计算。当流形具有对称性时,如用群作用表示,在许多情况下,等变上同调中的局部化公式将积分计算为作用不动点上的有限和,提供了一个强大的计算工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overview
This chapter provides an overview of equivariant cohomology. Cohomology in any of its various forms is one of the most important inventions of the twentieth century. A functor from topological spaces to rings, cohomology turns a geometric problem into an easier algebraic problem. Equivariant cohomology is a cohomology theory that takes into account the symmetries of a space. Many topological and geometrical quantities can be expressed as integrals on a manifold. Integrals are vitally important in mathematics. However, they are also rather difficult to compute. When a manifold has symmetries, as expressed by a group action, in many cases the localization formula in equivariant cohomology computes the integral as a finite sum over the fixed points of the action, providing a powerful computational tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信