关于最大大小项在对称函数中的实现

R. Tosic, I. Stojmenovic, M. Miyakawa
{"title":"关于最大大小项在对称函数中的实现","authors":"R. Tosic, I. Stojmenovic, M. Miyakawa","doi":"10.1109/ISMVL.1991.130714","DOIUrl":null,"url":null,"abstract":"The symmetric functions of m-valued logic have a sum-product (i.e. max-min) representation whose terms are sums of fundamental symmetric functions (FSFs). These sums may be simplified if they contain adjacent SFSs. This naturally leads to the combinatorial problem of determining the maximum size M(m,n) of adjacent-free sets of n-variable SFSs. J.C. Muzio (1990) related M(m,n) to a special graph F(m,n). Continuing in this direction, the authors give a simple closed formula for M(m,n) and then deduce that for large m or large n the largest nonsimplifiable set of n-variable SFSs consists of approximately one-half of all possible FSFs, proving thus also all the conjectures from the Muzio paper (see Proc. 20th Int. Symp. on Multiple-Valued Logic, p.292-9 (1990).).<<ETX>>","PeriodicalId":127974,"journal":{"name":"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On the maximum size of the terms in the realization of symmetric functions\",\"authors\":\"R. Tosic, I. Stojmenovic, M. Miyakawa\",\"doi\":\"10.1109/ISMVL.1991.130714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The symmetric functions of m-valued logic have a sum-product (i.e. max-min) representation whose terms are sums of fundamental symmetric functions (FSFs). These sums may be simplified if they contain adjacent SFSs. This naturally leads to the combinatorial problem of determining the maximum size M(m,n) of adjacent-free sets of n-variable SFSs. J.C. Muzio (1990) related M(m,n) to a special graph F(m,n). Continuing in this direction, the authors give a simple closed formula for M(m,n) and then deduce that for large m or large n the largest nonsimplifiable set of n-variable SFSs consists of approximately one-half of all possible FSFs, proving thus also all the conjectures from the Muzio paper (see Proc. 20th Int. Symp. on Multiple-Valued Logic, p.292-9 (1990).).<<ETX>>\",\"PeriodicalId\":127974,\"journal\":{\"name\":\"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1991.130714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1991.130714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

m值逻辑的对称函数具有和积(即最大-最小)表示,其项是基本对称函数(fsf)的和。如果它们包含相邻的SFSs,则这些和可以简化。这自然导致了确定n变量SFSs的无邻接集的最大大小M(M,n)的组合问题。J.C. Muzio(1990)将M(M,n)与一个特殊的图F(M,n)联系起来。继续这个方向,作者给出了M(M,n)的一个简单的封闭公式,然后推导出对于大M或大n,最大的n变量SFSs的不可化简集大约由所有可能的fsf的一半组成,从而也证明了Muzio论文中的所有猜想(见Proc. 20 Int.)。计算机协会。论多值逻辑,p.292-9 (1990). [j]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the maximum size of the terms in the realization of symmetric functions
The symmetric functions of m-valued logic have a sum-product (i.e. max-min) representation whose terms are sums of fundamental symmetric functions (FSFs). These sums may be simplified if they contain adjacent SFSs. This naturally leads to the combinatorial problem of determining the maximum size M(m,n) of adjacent-free sets of n-variable SFSs. J.C. Muzio (1990) related M(m,n) to a special graph F(m,n). Continuing in this direction, the authors give a simple closed formula for M(m,n) and then deduce that for large m or large n the largest nonsimplifiable set of n-variable SFSs consists of approximately one-half of all possible FSFs, proving thus also all the conjectures from the Muzio paper (see Proc. 20th Int. Symp. on Multiple-Valued Logic, p.292-9 (1990).).<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信