{"title":"IGBT PWM逆变器的电热仿真","authors":"H., Mantooth, A. R. Hefner","doi":"10.1109/PESC.1993.471938","DOIUrl":null,"url":null,"abstract":"A recently developed electro-thermal network simulation methodology is used to analyze the behavior of a full-bridge, pulse-width-modulated (PWM), voltage-source inverter which uses insulated gate bipolar transistors (IGBTs) as the switching devices. The electro-thermal simulations are performed using the Saber circuit simulator and include the control logic circuitry, the IGBT gate drivers, the physics-based IGBT electro-thermal model, and the thermal network component models for the power device silicon chips, packages, and heat sinks. It is shown that the thermal response of the silicon chip determines the IGBT temperature rise during the device switching cycle. The thermal response of the device TO247 package and silicon chip determines the device temperature rise during a single phase of the 60-Hz sinusoidal output. Also, the thermal response of the heat sink determines the device temperature rise during the system start-up and after load impedance changes. It is also shown that the full electro-thermal analysis is required to accurately describe the power losses and circuit efficiency.<<ETX>>","PeriodicalId":358822,"journal":{"name":"Proceedings of IEEE Power Electronics Specialist Conference - PESC '93","volume":"2018 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":"{\"title\":\"Electro-thermal simulation of an IGBT PWM inverter\",\"authors\":\"H., Mantooth, A. R. Hefner\",\"doi\":\"10.1109/PESC.1993.471938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recently developed electro-thermal network simulation methodology is used to analyze the behavior of a full-bridge, pulse-width-modulated (PWM), voltage-source inverter which uses insulated gate bipolar transistors (IGBTs) as the switching devices. The electro-thermal simulations are performed using the Saber circuit simulator and include the control logic circuitry, the IGBT gate drivers, the physics-based IGBT electro-thermal model, and the thermal network component models for the power device silicon chips, packages, and heat sinks. It is shown that the thermal response of the silicon chip determines the IGBT temperature rise during the device switching cycle. The thermal response of the device TO247 package and silicon chip determines the device temperature rise during a single phase of the 60-Hz sinusoidal output. Also, the thermal response of the heat sink determines the device temperature rise during the system start-up and after load impedance changes. It is also shown that the full electro-thermal analysis is required to accurately describe the power losses and circuit efficiency.<<ETX>>\",\"PeriodicalId\":358822,\"journal\":{\"name\":\"Proceedings of IEEE Power Electronics Specialist Conference - PESC '93\",\"volume\":\"2018 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"118\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE Power Electronics Specialist Conference - PESC '93\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESC.1993.471938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Power Electronics Specialist Conference - PESC '93","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESC.1993.471938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electro-thermal simulation of an IGBT PWM inverter
A recently developed electro-thermal network simulation methodology is used to analyze the behavior of a full-bridge, pulse-width-modulated (PWM), voltage-source inverter which uses insulated gate bipolar transistors (IGBTs) as the switching devices. The electro-thermal simulations are performed using the Saber circuit simulator and include the control logic circuitry, the IGBT gate drivers, the physics-based IGBT electro-thermal model, and the thermal network component models for the power device silicon chips, packages, and heat sinks. It is shown that the thermal response of the silicon chip determines the IGBT temperature rise during the device switching cycle. The thermal response of the device TO247 package and silicon chip determines the device temperature rise during a single phase of the 60-Hz sinusoidal output. Also, the thermal response of the heat sink determines the device temperature rise during the system start-up and after load impedance changes. It is also shown that the full electro-thermal analysis is required to accurately describe the power losses and circuit efficiency.<>