{"title":"基于yolo的流量计数系统","authors":"Jia-Ping Lin, Min-Te Sun","doi":"10.1109/TAAI.2018.00027","DOIUrl":null,"url":null,"abstract":"Image recognition can be applied in many applications of Intelligent Transportation System. Through automated traffic flow counting, the traffic information can be presented effectively for a given area. After the existing image recognition model process the monitoring video, the coordinates of objects in each frame can be easily extracted. The extracted object coordinates are then filtered to obtain the required vehicle coordinates. To achieve the function of vehicle counting, it is necessary to identify the relationship of vehicles in different frames, i.e., whether or not they represent the same vehicle. Although the vehicle counting can be achieved by using the tracking algorithm, a short period of recognition failure may cause wrong tracking, which will lead to incorrect traffic counting. In this paper, we propose a system that utilizes the YOLO framework for traffic flow counting. The system architecture consists of three blocks, including the Detector that generates the bounding box of vehicles, the Buffer which stores coordinates of vehicles, and the Counter which is responsible for vehicle counting. The proposed system requires only to utilize simple distance calculations to achieve the purpose of vehicle counting. In addition, by adding checkpoints, the system is able to alleviate the consequence of false detection. The videos from different locations and angles are used to verify and analyze the correctness and overall efficiency of the proposed system, and the results indicate that our system achieves high counting accuracy under the environment with sufficient ambient light.","PeriodicalId":211734,"journal":{"name":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"A YOLO-Based Traffic Counting System\",\"authors\":\"Jia-Ping Lin, Min-Te Sun\",\"doi\":\"10.1109/TAAI.2018.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image recognition can be applied in many applications of Intelligent Transportation System. Through automated traffic flow counting, the traffic information can be presented effectively for a given area. After the existing image recognition model process the monitoring video, the coordinates of objects in each frame can be easily extracted. The extracted object coordinates are then filtered to obtain the required vehicle coordinates. To achieve the function of vehicle counting, it is necessary to identify the relationship of vehicles in different frames, i.e., whether or not they represent the same vehicle. Although the vehicle counting can be achieved by using the tracking algorithm, a short period of recognition failure may cause wrong tracking, which will lead to incorrect traffic counting. In this paper, we propose a system that utilizes the YOLO framework for traffic flow counting. The system architecture consists of three blocks, including the Detector that generates the bounding box of vehicles, the Buffer which stores coordinates of vehicles, and the Counter which is responsible for vehicle counting. The proposed system requires only to utilize simple distance calculations to achieve the purpose of vehicle counting. In addition, by adding checkpoints, the system is able to alleviate the consequence of false detection. The videos from different locations and angles are used to verify and analyze the correctness and overall efficiency of the proposed system, and the results indicate that our system achieves high counting accuracy under the environment with sufficient ambient light.\",\"PeriodicalId\":211734,\"journal\":{\"name\":\"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAAI.2018.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2018.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image recognition can be applied in many applications of Intelligent Transportation System. Through automated traffic flow counting, the traffic information can be presented effectively for a given area. After the existing image recognition model process the monitoring video, the coordinates of objects in each frame can be easily extracted. The extracted object coordinates are then filtered to obtain the required vehicle coordinates. To achieve the function of vehicle counting, it is necessary to identify the relationship of vehicles in different frames, i.e., whether or not they represent the same vehicle. Although the vehicle counting can be achieved by using the tracking algorithm, a short period of recognition failure may cause wrong tracking, which will lead to incorrect traffic counting. In this paper, we propose a system that utilizes the YOLO framework for traffic flow counting. The system architecture consists of three blocks, including the Detector that generates the bounding box of vehicles, the Buffer which stores coordinates of vehicles, and the Counter which is responsible for vehicle counting. The proposed system requires only to utilize simple distance calculations to achieve the purpose of vehicle counting. In addition, by adding checkpoints, the system is able to alleviate the consequence of false detection. The videos from different locations and angles are used to verify and analyze the correctness and overall efficiency of the proposed system, and the results indicate that our system achieves high counting accuracy under the environment with sufficient ambient light.