L. Ehrenpreis方法在常微分方程中的应用

J. Kajiwara
{"title":"L. Ehrenpreis方法在常微分方程中的应用","authors":"J. Kajiwara","doi":"10.2996/KMJ/1138844757","DOIUrl":null,"url":null,"abstract":"In 1956 Ehrenpreis [3] considered an application of the sheaf theory to differential equations and gave a criterion for the existence of global solutions of differential equations where the existence of local solutions are assured. We shall apply this method to systems of ordinary and linear differential equations with coefficients meromorphic in a domain D on the plane C of one complex variable z. Let D and Wl be the sheaves of all germs of functions holomorphic and meromorphic in D respectively. Let a^ (j, k=l, 2, •••,/>) be functions meromorphic in D. For any element f=(f,f, , f p ) of 30̂ , we define","PeriodicalId":318148,"journal":{"name":"Kodai Mathematical Seminar Reports","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1963-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On an application of L. Ehrenpreis' method to ordinary differential equations\",\"authors\":\"J. Kajiwara\",\"doi\":\"10.2996/KMJ/1138844757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1956 Ehrenpreis [3] considered an application of the sheaf theory to differential equations and gave a criterion for the existence of global solutions of differential equations where the existence of local solutions are assured. We shall apply this method to systems of ordinary and linear differential equations with coefficients meromorphic in a domain D on the plane C of one complex variable z. Let D and Wl be the sheaves of all germs of functions holomorphic and meromorphic in D respectively. Let a^ (j, k=l, 2, •••,/>) be functions meromorphic in D. For any element f=(f,f, , f p ) of 30̂ , we define\",\"PeriodicalId\":318148,\"journal\":{\"name\":\"Kodai Mathematical Seminar Reports\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1963-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Seminar Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2996/KMJ/1138844757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Seminar Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2996/KMJ/1138844757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

1956年Ehrenpreis[3]考虑了束理论在微分方程中的应用,并给出了微分方程整体解存在的判据,其中局部解的存在是保证的。我们将此方法应用于一个复变量z在平面C上的域D上具有系数亚纯的常微分方程组和线性微分方程组。设D和Wl分别为D上全纯和亚纯函数的所有胚的集合。设a^ (j, k=l, 2,••••,/>)是d中的亚纯函数。对于30°的任意元素f=(f,f,,f p),我们定义
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On an application of L. Ehrenpreis' method to ordinary differential equations
In 1956 Ehrenpreis [3] considered an application of the sheaf theory to differential equations and gave a criterion for the existence of global solutions of differential equations where the existence of local solutions are assured. We shall apply this method to systems of ordinary and linear differential equations with coefficients meromorphic in a domain D on the plane C of one complex variable z. Let D and Wl be the sheaves of all germs of functions holomorphic and meromorphic in D respectively. Let a^ (j, k=l, 2, •••,/>) be functions meromorphic in D. For any element f=(f,f, , f p ) of 30̂ , we define
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信