6. 为(d + 1)维的移动域生成可接受的时空网格

Elias Karabelas, Martin Neumuller
{"title":"6. 为(d + 1)维的移动域生成可接受的时空网格","authors":"Elias Karabelas, Martin Neumuller","doi":"10.1515/9783110548488-006","DOIUrl":null,"url":null,"abstract":"In this paper we present a discontinuous Galerkin finite element method for the solution of the transient Stokes equations on moving domains. For the discretization we use an interior penalty Galerkin approach in space, and an upwind technique in time. The method is based on a decomposition of the space-time cylinder into finite elements. Our focus lies on three-dimensional moving geometries, thus we need to triangulate four dimensional objects. For this we will present an algorithm to generate $d+1$-dimensional simplex space-time meshes and we show under natural assumptions that the resulting space-time meshes are admissible. Further we will show how one can generate a four-dimensional object resolving the domain movement. First numerical results for the transient Stokes equations on triangulations generated with the newly developed meshing algorithm are presented.","PeriodicalId":313981,"journal":{"name":"Space-Time Methods","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"6. Generating admissible space-time meshes for moving domains in (d + 1) dimensions\",\"authors\":\"Elias Karabelas, Martin Neumuller\",\"doi\":\"10.1515/9783110548488-006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a discontinuous Galerkin finite element method for the solution of the transient Stokes equations on moving domains. For the discretization we use an interior penalty Galerkin approach in space, and an upwind technique in time. The method is based on a decomposition of the space-time cylinder into finite elements. Our focus lies on three-dimensional moving geometries, thus we need to triangulate four dimensional objects. For this we will present an algorithm to generate $d+1$-dimensional simplex space-time meshes and we show under natural assumptions that the resulting space-time meshes are admissible. Further we will show how one can generate a four-dimensional object resolving the domain movement. First numerical results for the transient Stokes equations on triangulations generated with the newly developed meshing algorithm are presented.\",\"PeriodicalId\":313981,\"journal\":{\"name\":\"Space-Time Methods\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space-Time Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/9783110548488-006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space-Time Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110548488-006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文给出了一种求解运动域上瞬态Stokes方程的不连续Galerkin有限元方法。对于离散化,我们在空间上使用内罚伽辽金方法,在时间上使用逆风技术。该方法基于将时空柱体分解为有限元。我们的重点在于三维运动几何,因此我们需要对四维物体进行三角测量。为此,我们将提出一种生成$d+1$维单纯时空网格的算法,并在自然假设下证明所得到的时空网格是可接受的。进一步,我们将展示如何生成一个四维对象来解析域运动。首先给出了用新网格算法生成的瞬态Stokes方程在三角剖分上的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
6. Generating admissible space-time meshes for moving domains in (d + 1) dimensions
In this paper we present a discontinuous Galerkin finite element method for the solution of the transient Stokes equations on moving domains. For the discretization we use an interior penalty Galerkin approach in space, and an upwind technique in time. The method is based on a decomposition of the space-time cylinder into finite elements. Our focus lies on three-dimensional moving geometries, thus we need to triangulate four dimensional objects. For this we will present an algorithm to generate $d+1$-dimensional simplex space-time meshes and we show under natural assumptions that the resulting space-time meshes are admissible. Further we will show how one can generate a four-dimensional object resolving the domain movement. First numerical results for the transient Stokes equations on triangulations generated with the newly developed meshing algorithm are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信