R. Quijada, H. Palza, Héctor Aguilar-Bolad, Remilson Cruz, Mehrdad YazdaniPedram
{"title":"聚乳酸与功能化氧化石墨烯纳米复合材料的研究","authors":"R. Quijada, H. Palza, Héctor Aguilar-Bolad, Remilson Cruz, Mehrdad YazdaniPedram","doi":"10.11159/icnfa22.120","DOIUrl":null,"url":null,"abstract":"Extended Abstract Poly(lactic acid) (PLA), is an aliphatic polyester that comes from renewable resources and is biodegradable [1]. PLA exhibits mechanical and physical properties comparable to some petroleum-derived polymers. However, its barrier properties need to be improved so that PLA can be used in food packaging [2,3]. In this context, the preparation of PLA-based composites by adding nanomaterials as fillers is a strategy that would improve their barrier properties. Graphene oxide (GO) is an attractive material for use in the preparation of composites due to its laminar morphology, high specific surface area and high aspect ratio that favor the increase of barrier properties. This work reports the functionalization of GO with two types of aliphatic alkylamines that, due to their nature, would improve the interaction of the filler with the polymer and would facilitate its exfoliation. The two selected alkylamines differ in the extension of the aliphatic chain that could have an impact on the properties of the resulting nanocomposites. Using X-ray diffraction (XRD), the interlayer distances of graphene oxide and graphene oxides functionalized with aliphatic alkylamines, namely, octadecylamine (ODA), and decylamine (DA), were determined. The functionalized graphene oxide with ODA was designated as GO-ODA and the graphene oxide functionalized with DA was named as GO-DA.","PeriodicalId":394576,"journal":{"name":"Proceedings of the 8th World Congress on New Technologies","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development Of Nanocomposites Based On PLA And Functionalized Graphene Oxide\",\"authors\":\"R. Quijada, H. Palza, Héctor Aguilar-Bolad, Remilson Cruz, Mehrdad YazdaniPedram\",\"doi\":\"10.11159/icnfa22.120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extended Abstract Poly(lactic acid) (PLA), is an aliphatic polyester that comes from renewable resources and is biodegradable [1]. PLA exhibits mechanical and physical properties comparable to some petroleum-derived polymers. However, its barrier properties need to be improved so that PLA can be used in food packaging [2,3]. In this context, the preparation of PLA-based composites by adding nanomaterials as fillers is a strategy that would improve their barrier properties. Graphene oxide (GO) is an attractive material for use in the preparation of composites due to its laminar morphology, high specific surface area and high aspect ratio that favor the increase of barrier properties. This work reports the functionalization of GO with two types of aliphatic alkylamines that, due to their nature, would improve the interaction of the filler with the polymer and would facilitate its exfoliation. The two selected alkylamines differ in the extension of the aliphatic chain that could have an impact on the properties of the resulting nanocomposites. Using X-ray diffraction (XRD), the interlayer distances of graphene oxide and graphene oxides functionalized with aliphatic alkylamines, namely, octadecylamine (ODA), and decylamine (DA), were determined. The functionalized graphene oxide with ODA was designated as GO-ODA and the graphene oxide functionalized with DA was named as GO-DA.\",\"PeriodicalId\":394576,\"journal\":{\"name\":\"Proceedings of the 8th World Congress on New Technologies\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th World Congress on New Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11159/icnfa22.120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th World Congress on New Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/icnfa22.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development Of Nanocomposites Based On PLA And Functionalized Graphene Oxide
Extended Abstract Poly(lactic acid) (PLA), is an aliphatic polyester that comes from renewable resources and is biodegradable [1]. PLA exhibits mechanical and physical properties comparable to some petroleum-derived polymers. However, its barrier properties need to be improved so that PLA can be used in food packaging [2,3]. In this context, the preparation of PLA-based composites by adding nanomaterials as fillers is a strategy that would improve their barrier properties. Graphene oxide (GO) is an attractive material for use in the preparation of composites due to its laminar morphology, high specific surface area and high aspect ratio that favor the increase of barrier properties. This work reports the functionalization of GO with two types of aliphatic alkylamines that, due to their nature, would improve the interaction of the filler with the polymer and would facilitate its exfoliation. The two selected alkylamines differ in the extension of the aliphatic chain that could have an impact on the properties of the resulting nanocomposites. Using X-ray diffraction (XRD), the interlayer distances of graphene oxide and graphene oxides functionalized with aliphatic alkylamines, namely, octadecylamine (ODA), and decylamine (DA), were determined. The functionalized graphene oxide with ODA was designated as GO-ODA and the graphene oxide functionalized with DA was named as GO-DA.