通过混合绝缘聚合物对中性三元半透明有机光伏进行精确调整

Dayong Zhang, Genjie Yang, R. Wang, Junsheng Yu
{"title":"通过混合绝缘聚合物对中性三元半透明有机光伏进行精确调整","authors":"Dayong Zhang, Genjie Yang, R. Wang, Junsheng Yu","doi":"10.1117/12.2604415","DOIUrl":null,"url":null,"abstract":"Recently, ternary semi-transparent organic photovoltaics (STOPVs) have developed rapidly due to their impressive application prospect in vegetable greenhouse, smart light window, and building-integrated solar cells. However, STOPVs have special requirements for the thickness of the active layer, which will affect the performance of the solar cells. Therefore, a new method developed to trade off device performance and average transmittance (AVT) are extremely important. Herein, we used an insulating polymer poly(N-vinylcarbazole) (PVK) as a color control agent to improve the AVT without changing the power conversion efficiency (PCE) of ternary STOPVs. Through mixing of PVK, the STOPVs show remarkable enhancement of the hole mobility and visible light transmittance, which leading the AVT of the device reaches 23.2% while maintaining the PCE over 14%. This method can effectively realize the preparation of high-performance neutral STOPVs, which is worthy of further promotion and research.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise adjustment for neutral ternary semitransparent organic photovoltaics by mixing an insulating polymer\",\"authors\":\"Dayong Zhang, Genjie Yang, R. Wang, Junsheng Yu\",\"doi\":\"10.1117/12.2604415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, ternary semi-transparent organic photovoltaics (STOPVs) have developed rapidly due to their impressive application prospect in vegetable greenhouse, smart light window, and building-integrated solar cells. However, STOPVs have special requirements for the thickness of the active layer, which will affect the performance of the solar cells. Therefore, a new method developed to trade off device performance and average transmittance (AVT) are extremely important. Herein, we used an insulating polymer poly(N-vinylcarbazole) (PVK) as a color control agent to improve the AVT without changing the power conversion efficiency (PCE) of ternary STOPVs. Through mixing of PVK, the STOPVs show remarkable enhancement of the hole mobility and visible light transmittance, which leading the AVT of the device reaches 23.2% while maintaining the PCE over 14%. This method can effectively realize the preparation of high-performance neutral STOPVs, which is worthy of further promotion and research.\",\"PeriodicalId\":236529,\"journal\":{\"name\":\"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2604415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2604415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,三元半透明有机光伏材料在蔬菜温室、智能光窗、建筑一体化太阳能电池等领域的应用前景广阔,发展迅速。然而,stopv对有源层的厚度有特殊的要求,这将影响太阳能电池的性能。因此,开发一种新的方法来权衡器件性能和平均透射率(AVT)是非常重要的。本文采用绝缘聚合物聚(n -乙烯基咔唑)(PVK)作为色控剂,在不改变三元stopv功率转换效率(PCE)的情况下提高了AVT。通过PVK的掺入,stopv的空穴迁移率和可见光透过率显著提高,器件的AVT达到23.2%,PCE保持在14%以上。该方法可以有效地实现高性能中性stopv的制备,值得进一步推广和研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precise adjustment for neutral ternary semitransparent organic photovoltaics by mixing an insulating polymer
Recently, ternary semi-transparent organic photovoltaics (STOPVs) have developed rapidly due to their impressive application prospect in vegetable greenhouse, smart light window, and building-integrated solar cells. However, STOPVs have special requirements for the thickness of the active layer, which will affect the performance of the solar cells. Therefore, a new method developed to trade off device performance and average transmittance (AVT) are extremely important. Herein, we used an insulating polymer poly(N-vinylcarbazole) (PVK) as a color control agent to improve the AVT without changing the power conversion efficiency (PCE) of ternary STOPVs. Through mixing of PVK, the STOPVs show remarkable enhancement of the hole mobility and visible light transmittance, which leading the AVT of the device reaches 23.2% while maintaining the PCE over 14%. This method can effectively realize the preparation of high-performance neutral STOPVs, which is worthy of further promotion and research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信