基于神经网络的轨道车辆阻尼器故障检测可行性研究

R. Melnik, Seweryn Koziak, J. Dižo, T. Kuźmierowski, E. Piotrowska
{"title":"基于神经网络的轨道车辆阻尼器故障检测可行性研究","authors":"R. Melnik, Seweryn Koziak, J. Dižo, T. Kuźmierowski, E. Piotrowska","doi":"10.17531/ein.2023.1.5","DOIUrl":null,"url":null,"abstract":"The aim of the study was to investigate rail vehicle dynamics under\nprimary suspension dampers faults and explore possibility of its\ndetection by means of artificial neural networks. For these purposes two\ntypes of analysis were carried out: preliminary analysis of 1 DOF rail\nvehicle model and a second one - a passenger coach benchmark model\nwas tested in multibody simulation software - MSC.Adams with use of\nVI-Rail package. Acceleration signals obtained from the latter analysis\nserved as an input data into the artificial neural network (ANN). ANNs\nof different number of hidden layers were capable of detecting faults for\nthe trained suspension fault cases, however, achieved accuracy was\nbelow 63% at the best. These results can be considered satisfactory\nconsidering the complexity of dynamic phenomena occurring in the\nvibration system of a rail vehicle.","PeriodicalId":335030,"journal":{"name":"Eksploatacja i Niezawodność – Maintenance and Reliability","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feasibility study of a rail vehicle damper fault detection by artificial neural Indexed by:\\nnetworks\",\"authors\":\"R. Melnik, Seweryn Koziak, J. Dižo, T. Kuźmierowski, E. Piotrowska\",\"doi\":\"10.17531/ein.2023.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the study was to investigate rail vehicle dynamics under\\nprimary suspension dampers faults and explore possibility of its\\ndetection by means of artificial neural networks. For these purposes two\\ntypes of analysis were carried out: preliminary analysis of 1 DOF rail\\nvehicle model and a second one - a passenger coach benchmark model\\nwas tested in multibody simulation software - MSC.Adams with use of\\nVI-Rail package. Acceleration signals obtained from the latter analysis\\nserved as an input data into the artificial neural network (ANN). ANNs\\nof different number of hidden layers were capable of detecting faults for\\nthe trained suspension fault cases, however, achieved accuracy was\\nbelow 63% at the best. These results can be considered satisfactory\\nconsidering the complexity of dynamic phenomena occurring in the\\nvibration system of a rail vehicle.\",\"PeriodicalId\":335030,\"journal\":{\"name\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17531/ein.2023.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja i Niezawodność – Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein.2023.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是研究轨道车辆在初级悬架减震器故障下的动力学特性,并探讨用人工神经网络检测故障的可能性。为此进行了两种分析:一种是对1自由度轨道车辆模型进行初步分析,另一种是在多体仿真软件MSC中对客车基准模型进行测试。亚当斯使用vi - rail包。后一种分析得到的加速度信号作为人工神经网络(ANN)的输入数据。对于训练好的悬架故障案例,不同隐藏层数的神经网络都能检测出故障,但准确率最高在63%以下。考虑到轨道车辆振动系统动力学现象的复杂性,这些结果是令人满意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feasibility study of a rail vehicle damper fault detection by artificial neural Indexed by: networks
The aim of the study was to investigate rail vehicle dynamics under primary suspension dampers faults and explore possibility of its detection by means of artificial neural networks. For these purposes two types of analysis were carried out: preliminary analysis of 1 DOF rail vehicle model and a second one - a passenger coach benchmark model was tested in multibody simulation software - MSC.Adams with use of VI-Rail package. Acceleration signals obtained from the latter analysis served as an input data into the artificial neural network (ANN). ANNs of different number of hidden layers were capable of detecting faults for the trained suspension fault cases, however, achieved accuracy was below 63% at the best. These results can be considered satisfactory considering the complexity of dynamic phenomena occurring in the vibration system of a rail vehicle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信