储能日前调度在微电网和小电力园区应用中减少电网能源输出,增加自用

Joanna Sobon, A. Roscoe, B. Stephen
{"title":"储能日前调度在微电网和小电力园区应用中减少电网能源输出,增加自用","authors":"Joanna Sobon, A. Roscoe, B. Stephen","doi":"10.1109/UPEC.2017.8231870","DOIUrl":null,"url":null,"abstract":"Developments in energy storage technology will start to play a prominent role in overcoming the problems of generation intermittency by providing the ability to shift demand to times when generation is available. However, exploiting the potential of this technology requires the design of an optimal charging and discharging schedule to allow its integration with the energy network that brings maximum advantage to both the system and the user. This paper introduces a mathematical model for generation and demand forecasting with energy storage scheduling that can be used for micro-grid and small power park applications. The proposed solution models the physical limitations associated with the energy storage technology used, which will constrain charge and discharge schedules beyond what can be forecast for them. A case study of a community feeder with large PV installations is presented to demonstrate the effectiveness of the model. Day-ahead charge and discharge schedules were produced that increased self-consumption within the system and reduced energy export to the grid. The main contribution of this work is the design of a generic parametrized forecasting and energy storage scheduling tool that will be a platform for further development to specialized storage technology and its potential scalability.","PeriodicalId":272049,"journal":{"name":"2017 52nd International Universities Power Engineering Conference (UPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Energy storage day-ahead scheduling to reduce grid energy export and increase self-consumption for micro-grid and small power park applications\",\"authors\":\"Joanna Sobon, A. Roscoe, B. Stephen\",\"doi\":\"10.1109/UPEC.2017.8231870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developments in energy storage technology will start to play a prominent role in overcoming the problems of generation intermittency by providing the ability to shift demand to times when generation is available. However, exploiting the potential of this technology requires the design of an optimal charging and discharging schedule to allow its integration with the energy network that brings maximum advantage to both the system and the user. This paper introduces a mathematical model for generation and demand forecasting with energy storage scheduling that can be used for micro-grid and small power park applications. The proposed solution models the physical limitations associated with the energy storage technology used, which will constrain charge and discharge schedules beyond what can be forecast for them. A case study of a community feeder with large PV installations is presented to demonstrate the effectiveness of the model. Day-ahead charge and discharge schedules were produced that increased self-consumption within the system and reduced energy export to the grid. The main contribution of this work is the design of a generic parametrized forecasting and energy storage scheduling tool that will be a platform for further development to specialized storage technology and its potential scalability.\",\"PeriodicalId\":272049,\"journal\":{\"name\":\"2017 52nd International Universities Power Engineering Conference (UPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 52nd International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2017.8231870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 52nd International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2017.8231870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

储能技术的发展将开始在克服发电间歇性问题方面发挥重要作用,因为它能够将需求转移到有发电可用的时间。然而,开发这项技术的潜力需要设计一个最佳的充电和放电计划,以使其与能源网络集成,为系统和用户带来最大的优势。本文介绍了一种适用于微电网和小型电力园区的具有储能调度的发电和需求预测数学模型。提出的解决方案模拟了与所使用的储能技术相关的物理限制,这将限制充电和放电时间表,超出了对它们的预测。以大型光伏发电社区馈电系统为例,验证了该模型的有效性。制定了提前一天的充放电计划,增加了系统内的自我消耗,减少了向电网的能源输出。本工作的主要贡献是设计了一个通用的参数化预测和储能调度工具,该工具将为进一步开发专用储能技术及其潜在的可扩展性提供平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy storage day-ahead scheduling to reduce grid energy export and increase self-consumption for micro-grid and small power park applications
Developments in energy storage technology will start to play a prominent role in overcoming the problems of generation intermittency by providing the ability to shift demand to times when generation is available. However, exploiting the potential of this technology requires the design of an optimal charging and discharging schedule to allow its integration with the energy network that brings maximum advantage to both the system and the user. This paper introduces a mathematical model for generation and demand forecasting with energy storage scheduling that can be used for micro-grid and small power park applications. The proposed solution models the physical limitations associated with the energy storage technology used, which will constrain charge and discharge schedules beyond what can be forecast for them. A case study of a community feeder with large PV installations is presented to demonstrate the effectiveness of the model. Day-ahead charge and discharge schedules were produced that increased self-consumption within the system and reduced energy export to the grid. The main contribution of this work is the design of a generic parametrized forecasting and energy storage scheduling tool that will be a platform for further development to specialized storage technology and its potential scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信