基于citeseerx的记录链接与元数据提取数据集

Z. Bodó
{"title":"基于citeseerx的记录链接与元数据提取数据集","authors":"Z. Bodó","doi":"10.1109/SYNASC.2018.00044","DOIUrl":null,"url":null,"abstract":"Data cleaning constitutes an important problem in information science. Collecting data about the same entities from multiple sources or following distinct methodologies might result in slightly different, inconsistent data. The objective of data cleaning is to produce a fused version combining the differing data, resulting in a cleaner dataset. In this paper we collect document metadata records from CiteSeerX and build a supervised record linker to Crossref. The supervised method is trained using a manually linked dataset containing 512 verified DOIs—to our knowledge, up to now being the largest such dataset for bibliographic record linkage. We experiment using different supervised learning methods, and also prove experimentally that the accuracy of the attached metadata records can improve the performance of automatic metadata extraction systems.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A CiteSeerX-Based Dataset for Record Linkage and Metadata Extraction\",\"authors\":\"Z. Bodó\",\"doi\":\"10.1109/SYNASC.2018.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data cleaning constitutes an important problem in information science. Collecting data about the same entities from multiple sources or following distinct methodologies might result in slightly different, inconsistent data. The objective of data cleaning is to produce a fused version combining the differing data, resulting in a cleaner dataset. In this paper we collect document metadata records from CiteSeerX and build a supervised record linker to Crossref. The supervised method is trained using a manually linked dataset containing 512 verified DOIs—to our knowledge, up to now being the largest such dataset for bibliographic record linkage. We experiment using different supervised learning methods, and also prove experimentally that the accuracy of the attached metadata records can improve the performance of automatic metadata extraction systems.\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

数据清洗是信息科学中的一个重要问题。从多个来源或遵循不同的方法收集关于相同实体的数据可能会导致数据略有不同且不一致。数据清理的目标是生成一个结合不同数据的融合版本,从而产生一个更干净的数据集。在本文中,我们从CiteSeerX收集文档元数据记录,并构建一个监督记录链接器到Crossref。监督方法使用包含512个经过验证的dois的手动链接数据集进行训练,据我们所知,这是迄今为止最大的书目记录链接数据集。我们使用不同的监督学习方法进行了实验,并通过实验证明了附加元数据记录的准确性可以提高元数据自动提取系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CiteSeerX-Based Dataset for Record Linkage and Metadata Extraction
Data cleaning constitutes an important problem in information science. Collecting data about the same entities from multiple sources or following distinct methodologies might result in slightly different, inconsistent data. The objective of data cleaning is to produce a fused version combining the differing data, resulting in a cleaner dataset. In this paper we collect document metadata records from CiteSeerX and build a supervised record linker to Crossref. The supervised method is trained using a manually linked dataset containing 512 verified DOIs—to our knowledge, up to now being the largest such dataset for bibliographic record linkage. We experiment using different supervised learning methods, and also prove experimentally that the accuracy of the attached metadata records can improve the performance of automatic metadata extraction systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信