Manli Xue, Lu Sun, Shuo Wang, Peipei Liang, Xiaolong Chen, F. Nian
{"title":"基于bp神经网络的GaN hemt非线性等效电路模型","authors":"Manli Xue, Lu Sun, Shuo Wang, Peipei Liang, Xiaolong Chen, F. Nian","doi":"10.1109/EDSSC.2019.8754355","DOIUrl":null,"url":null,"abstract":"A Back-Propagation Neural Network (BPNN) nonlinear model of $GaN$ HEMT is proposed, which can adaptively fit the nonlinear parameter relationship, and reduce computation. The network weights are obtained automatically, and then the nonlinear mapping relation is determined. The comparison between BPNN model and test data proves the good consistency.","PeriodicalId":183887,"journal":{"name":"2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear Equivalent Circuit Model Base on BPNN for GaN HEMTs\",\"authors\":\"Manli Xue, Lu Sun, Shuo Wang, Peipei Liang, Xiaolong Chen, F. Nian\",\"doi\":\"10.1109/EDSSC.2019.8754355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Back-Propagation Neural Network (BPNN) nonlinear model of $GaN$ HEMT is proposed, which can adaptively fit the nonlinear parameter relationship, and reduce computation. The network weights are obtained automatically, and then the nonlinear mapping relation is determined. The comparison between BPNN model and test data proves the good consistency.\",\"PeriodicalId\":183887,\"journal\":{\"name\":\"2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDSSC.2019.8754355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDSSC.2019.8754355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear Equivalent Circuit Model Base on BPNN for GaN HEMTs
A Back-Propagation Neural Network (BPNN) nonlinear model of $GaN$ HEMT is proposed, which can adaptively fit the nonlinear parameter relationship, and reduce computation. The network weights are obtained automatically, and then the nonlinear mapping relation is determined. The comparison between BPNN model and test data proves the good consistency.