Amal Hyadi, Elmahdi Driouch, W. Ajib, Mohamed-Slim Alouini
{"title":"用自适应双向中继叠加认知无线电系统","authors":"Amal Hyadi, Elmahdi Driouch, W. Ajib, Mohamed-Slim Alouini","doi":"10.1109/GLOCOM.2013.6831194","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a spectrum sharing mechanism with a two-phase two-way relaying protocol for an overlay cognitive network. The system comprises two primary users (PUs) and two secondary users (SUs). One of the SUs acts as a relay for the PUs and gains spectrum sharing as long as he respects outage probability constraints of the primary system. Moreover, we consider that the relaying node performs an optimal power allocation scheme that minimizes the outage performance of the secondary receiver. Closed form expressions for the outage probability are derived for the cases of Decode-and-Forward (DF), Amplify-and-Forward (AF), and adaptive relaying. Numerical simulations are presented to illustrate and compare the obtained results.","PeriodicalId":233798,"journal":{"name":"2013 IEEE Global Communications Conference (GLOBECOM)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Overlay cognitive radio systems with adaptive two-way relaying\",\"authors\":\"Amal Hyadi, Elmahdi Driouch, W. Ajib, Mohamed-Slim Alouini\",\"doi\":\"10.1109/GLOCOM.2013.6831194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a spectrum sharing mechanism with a two-phase two-way relaying protocol for an overlay cognitive network. The system comprises two primary users (PUs) and two secondary users (SUs). One of the SUs acts as a relay for the PUs and gains spectrum sharing as long as he respects outage probability constraints of the primary system. Moreover, we consider that the relaying node performs an optimal power allocation scheme that minimizes the outage performance of the secondary receiver. Closed form expressions for the outage probability are derived for the cases of Decode-and-Forward (DF), Amplify-and-Forward (AF), and adaptive relaying. Numerical simulations are presented to illustrate and compare the obtained results.\",\"PeriodicalId\":233798,\"journal\":{\"name\":\"2013 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2013.6831194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2013.6831194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Overlay cognitive radio systems with adaptive two-way relaying
In this paper, we propose a spectrum sharing mechanism with a two-phase two-way relaying protocol for an overlay cognitive network. The system comprises two primary users (PUs) and two secondary users (SUs). One of the SUs acts as a relay for the PUs and gains spectrum sharing as long as he respects outage probability constraints of the primary system. Moreover, we consider that the relaying node performs an optimal power allocation scheme that minimizes the outage performance of the secondary receiver. Closed form expressions for the outage probability are derived for the cases of Decode-and-Forward (DF), Amplify-and-Forward (AF), and adaptive relaying. Numerical simulations are presented to illustrate and compare the obtained results.