求一类波动方程正则变量的积分因子

S. Giles
{"title":"求一类波动方程正则变量的积分因子","authors":"S. Giles","doi":"10.1109/APS.1993.385374","DOIUrl":null,"url":null,"abstract":"A method to facilitate the determination of canonical variables of the one-dimensional wave equation in nonhomogeneous media is presented. In order to solve the second-order hyperbolic partial differential equation a transformation from the independent real variables x and y to two canonical variables is used. A method is presented which shows a way of determining a solution when the wave-speed function /spl sigma/(x,y) meets certain requirements on continuity, and the function u(x,y) meets certain integrability requirements. The method depends on finding an integrating factor, f(x,y).<<ETX>>","PeriodicalId":138141,"journal":{"name":"Proceedings of IEEE Antennas and Propagation Society International Symposium","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integrating factor to find the canonical variables of a class of wave equations\",\"authors\":\"S. Giles\",\"doi\":\"10.1109/APS.1993.385374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method to facilitate the determination of canonical variables of the one-dimensional wave equation in nonhomogeneous media is presented. In order to solve the second-order hyperbolic partial differential equation a transformation from the independent real variables x and y to two canonical variables is used. A method is presented which shows a way of determining a solution when the wave-speed function /spl sigma/(x,y) meets certain requirements on continuity, and the function u(x,y) meets certain integrability requirements. The method depends on finding an integrating factor, f(x,y).<<ETX>>\",\"PeriodicalId\":138141,\"journal\":{\"name\":\"Proceedings of IEEE Antennas and Propagation Society International Symposium\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE Antennas and Propagation Society International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.1993.385374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.1993.385374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种便于确定非均匀介质中一维波动方程典型变量的方法。为了求解二阶双曲型偏微分方程,采用了由独立实变量x和y到两个正则变量的变换。给出了波速函数/spl σ /(x,y)满足一定的连续性要求和函数u(x,y)满足一定的可积性要求时确定解的方法。该方法依赖于找到一个积分因子f(x,y)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An integrating factor to find the canonical variables of a class of wave equations
A method to facilitate the determination of canonical variables of the one-dimensional wave equation in nonhomogeneous media is presented. In order to solve the second-order hyperbolic partial differential equation a transformation from the independent real variables x and y to two canonical variables is used. A method is presented which shows a way of determining a solution when the wave-speed function /spl sigma/(x,y) meets certain requirements on continuity, and the function u(x,y) meets certain integrability requirements. The method depends on finding an integrating factor, f(x,y).<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信