基于心电数据的呼吸暂停检测数据不平衡的生成过采样方法(GenOMe)

H. Sanabila, Ilham Kusuma, W. Jatmiko
{"title":"基于心电数据的呼吸暂停检测数据不平衡的生成过采样方法(GenOMe)","authors":"H. Sanabila, Ilham Kusuma, W. Jatmiko","doi":"10.1109/ICACSIS.2016.7872805","DOIUrl":null,"url":null,"abstract":"One of machine learning problem that is difficult but important to be addressed is imbalanced data where particular data is recessive while the others are dominant. Most of classifiers performance significantly degraded when dealing with imbalanced data. The major approaches to tackle imbalanced data are cost sensitive learning which modifies the classifier and resampling which modifies the data distribution. In this research, we employed generated oversampling method (GenOMe) that generate new data point with a particular distribution as a constraint. We examine three distribution functions: Beta, Gamma, and Gaussian distribution. We use Logistic Regression, Support Vector Machine (SVM), and Naive Bayes as classifier to assure the robustness of GenOMe. The experimental results shows that GenOMe outperforms classification using original data and classification using SMOTe (Synthetic Minority Oversampling Technique) data.","PeriodicalId":267924,"journal":{"name":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Generative oversampling method (GenOMe) for imbalanced data on apnea detection using ECG data\",\"authors\":\"H. Sanabila, Ilham Kusuma, W. Jatmiko\",\"doi\":\"10.1109/ICACSIS.2016.7872805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of machine learning problem that is difficult but important to be addressed is imbalanced data where particular data is recessive while the others are dominant. Most of classifiers performance significantly degraded when dealing with imbalanced data. The major approaches to tackle imbalanced data are cost sensitive learning which modifies the classifier and resampling which modifies the data distribution. In this research, we employed generated oversampling method (GenOMe) that generate new data point with a particular distribution as a constraint. We examine three distribution functions: Beta, Gamma, and Gaussian distribution. We use Logistic Regression, Support Vector Machine (SVM), and Naive Bayes as classifier to assure the robustness of GenOMe. The experimental results shows that GenOMe outperforms classification using original data and classification using SMOTe (Synthetic Minority Oversampling Technique) data.\",\"PeriodicalId\":267924,\"journal\":{\"name\":\"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2016.7872805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2016.7872805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

其中一个困难但重要的机器学习问题是不平衡数据,其中特定数据是隐性的,而其他数据是显性的。大多数分类器在处理不平衡数据时性能显著下降。处理不平衡数据的主要方法是修改分类器的代价敏感学习和修改数据分布的重采样。在本研究中,我们采用生成过采样方法(GenOMe),生成具有特定分布的新数据点作为约束。我们研究了三种分布函数:Beta、Gamma和高斯分布。我们使用逻辑回归、支持向量机(SVM)和朴素贝叶斯作为分类器来保证基因组的鲁棒性。实验结果表明,基因组分类优于原始数据分类和SMOTe (Synthetic Minority Oversampling Technique)数据分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative oversampling method (GenOMe) for imbalanced data on apnea detection using ECG data
One of machine learning problem that is difficult but important to be addressed is imbalanced data where particular data is recessive while the others are dominant. Most of classifiers performance significantly degraded when dealing with imbalanced data. The major approaches to tackle imbalanced data are cost sensitive learning which modifies the classifier and resampling which modifies the data distribution. In this research, we employed generated oversampling method (GenOMe) that generate new data point with a particular distribution as a constraint. We examine three distribution functions: Beta, Gamma, and Gaussian distribution. We use Logistic Regression, Support Vector Machine (SVM), and Naive Bayes as classifier to assure the robustness of GenOMe. The experimental results shows that GenOMe outperforms classification using original data and classification using SMOTe (Synthetic Minority Oversampling Technique) data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信