{"title":"光波导和光纤与化学传感应用的有效建模","authors":"A. Weisshaar, K. Remley","doi":"10.1117/12.245572","DOIUrl":null,"url":null,"abstract":"The impedance boundary method of moments (IBMOM) for planar optical waveguides is reviewed. An extension of the IBMOM for optical fibers with truncated graded index profile is described. Results for a step index fiber show that virtually exact solutions for the modal field profile and propagation constant can be obtained with only three Legendre expansion functions. The IBMOM is applied in the design and analysis of an evanescent field optical waveguide chemical sensor which utilizes an antiresonant reflecting optical waveguide (ARROW) structure and is implemented as a Mach-Zehnder interferometer. The ARROW structure allows the use of a 5 micrometer wide guiding region for efficient coupling into a single mode optical fiber. The ARROW sensor is designed for a sensitivity of 180 degrees/cm phase change for a change of 0.05 in refractive index.","PeriodicalId":293004,"journal":{"name":"Pacific Northwest Fiber Optic Sensor","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient modeling of optical waveguides and fibers with chemical sensing applications\",\"authors\":\"A. Weisshaar, K. Remley\",\"doi\":\"10.1117/12.245572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impedance boundary method of moments (IBMOM) for planar optical waveguides is reviewed. An extension of the IBMOM for optical fibers with truncated graded index profile is described. Results for a step index fiber show that virtually exact solutions for the modal field profile and propagation constant can be obtained with only three Legendre expansion functions. The IBMOM is applied in the design and analysis of an evanescent field optical waveguide chemical sensor which utilizes an antiresonant reflecting optical waveguide (ARROW) structure and is implemented as a Mach-Zehnder interferometer. The ARROW structure allows the use of a 5 micrometer wide guiding region for efficient coupling into a single mode optical fiber. The ARROW sensor is designed for a sensitivity of 180 degrees/cm phase change for a change of 0.05 in refractive index.\",\"PeriodicalId\":293004,\"journal\":{\"name\":\"Pacific Northwest Fiber Optic Sensor\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Northwest Fiber Optic Sensor\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.245572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Northwest Fiber Optic Sensor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.245572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient modeling of optical waveguides and fibers with chemical sensing applications
The impedance boundary method of moments (IBMOM) for planar optical waveguides is reviewed. An extension of the IBMOM for optical fibers with truncated graded index profile is described. Results for a step index fiber show that virtually exact solutions for the modal field profile and propagation constant can be obtained with only three Legendre expansion functions. The IBMOM is applied in the design and analysis of an evanescent field optical waveguide chemical sensor which utilizes an antiresonant reflecting optical waveguide (ARROW) structure and is implemented as a Mach-Zehnder interferometer. The ARROW structure allows the use of a 5 micrometer wide guiding region for efficient coupling into a single mode optical fiber. The ARROW sensor is designed for a sensitivity of 180 degrees/cm phase change for a change of 0.05 in refractive index.