Marion Koelle, Madalina Nicolae, A. Nittala, M. Teyssier, Jürgen Steimle
{"title":"交互式生物塑料软设备原型设计","authors":"Marion Koelle, Madalina Nicolae, A. Nittala, M. Teyssier, Jürgen Steimle","doi":"10.1145/3526113.3545623","DOIUrl":null,"url":null,"abstract":"Designers and makers are increasingly interested in leveraging bio-based and bio-degradable ‘do-it-yourself’ (DIY) materials for sustainable prototyping. Their self-produced bioplastics possess compelling properties such as self-adhesion but have so far not been functionalized to create soft interactive devices, due to a lack of DIY techniques for the fabrication of functional electronic circuits and sensors. In this paper, we contribute a DIY approach for creating Interactive Bioplastics that is accessible to a wide audience, making use of easy-to-obtain bio-based raw materials and familiar tools. We present three types of conductive bioplastic materials and their formulation: sheets, pastes and foams. Our materials enable additive and subtractive fabrication of soft circuits and sensors. Furthermore, we demonstrate how these materials can substitute conventional prototyping materials, be combined with off-the-shelf electronics, and be fed into a sustainable material ‘life-cycle’ including disassembly, re-use, and re-melting of materials. A formal characterization of our conductors highlights that they are even on-par with commercially available carbon-based conductive pastes.","PeriodicalId":200048,"journal":{"name":"Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Prototyping Soft Devices with Interactive Bioplastics\",\"authors\":\"Marion Koelle, Madalina Nicolae, A. Nittala, M. Teyssier, Jürgen Steimle\",\"doi\":\"10.1145/3526113.3545623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designers and makers are increasingly interested in leveraging bio-based and bio-degradable ‘do-it-yourself’ (DIY) materials for sustainable prototyping. Their self-produced bioplastics possess compelling properties such as self-adhesion but have so far not been functionalized to create soft interactive devices, due to a lack of DIY techniques for the fabrication of functional electronic circuits and sensors. In this paper, we contribute a DIY approach for creating Interactive Bioplastics that is accessible to a wide audience, making use of easy-to-obtain bio-based raw materials and familiar tools. We present three types of conductive bioplastic materials and their formulation: sheets, pastes and foams. Our materials enable additive and subtractive fabrication of soft circuits and sensors. Furthermore, we demonstrate how these materials can substitute conventional prototyping materials, be combined with off-the-shelf electronics, and be fed into a sustainable material ‘life-cycle’ including disassembly, re-use, and re-melting of materials. A formal characterization of our conductors highlights that they are even on-par with commercially available carbon-based conductive pastes.\",\"PeriodicalId\":200048,\"journal\":{\"name\":\"Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526113.3545623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526113.3545623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prototyping Soft Devices with Interactive Bioplastics
Designers and makers are increasingly interested in leveraging bio-based and bio-degradable ‘do-it-yourself’ (DIY) materials for sustainable prototyping. Their self-produced bioplastics possess compelling properties such as self-adhesion but have so far not been functionalized to create soft interactive devices, due to a lack of DIY techniques for the fabrication of functional electronic circuits and sensors. In this paper, we contribute a DIY approach for creating Interactive Bioplastics that is accessible to a wide audience, making use of easy-to-obtain bio-based raw materials and familiar tools. We present three types of conductive bioplastic materials and their formulation: sheets, pastes and foams. Our materials enable additive and subtractive fabrication of soft circuits and sensors. Furthermore, we demonstrate how these materials can substitute conventional prototyping materials, be combined with off-the-shelf electronics, and be fed into a sustainable material ‘life-cycle’ including disassembly, re-use, and re-melting of materials. A formal characterization of our conductors highlights that they are even on-par with commercially available carbon-based conductive pastes.