全球太阳辐射的气象数据驱动预测

Bishnu Dalal, A. Bagui, S. Sengupta
{"title":"全球太阳辐射的气象数据驱动预测","authors":"Bishnu Dalal, A. Bagui, S. Sengupta","doi":"10.1109/CMI50323.2021.9362766","DOIUrl":null,"url":null,"abstract":"This paper aims at prediction of global solar radiation (GSR) using artificial neural network (ANN) model. Various meteorological parameters such as relative humidity, average air temperature, wind speed, wind direction, dew point and atmospheric pressure contribute to estimation of global solar radiation. A search has been carried out to find the strongly correlated variables which contribute more to this assessment. On that basis, an ANN model is devised for the prediction of GSR. The results are compared with those obtained using multiple linear regression (MLR) model. The performances of the models are checked using various statistical parameters such as mean absolute deviation (MAD), mean square error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE) and correlation coefficient (R). A comparison of the predicted values obtained from the two methods and the actual values obtained from a weather monitoring station shows that the developed ANN model generates values closer to actual. The best MAPE calculated by using ANN model is 2.851%.","PeriodicalId":142069,"journal":{"name":"2021 IEEE Second International Conference on Control, Measurement and Instrumentation (CMI)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meteorological Data Driven Prediction of Global Solar Radiation\",\"authors\":\"Bishnu Dalal, A. Bagui, S. Sengupta\",\"doi\":\"10.1109/CMI50323.2021.9362766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at prediction of global solar radiation (GSR) using artificial neural network (ANN) model. Various meteorological parameters such as relative humidity, average air temperature, wind speed, wind direction, dew point and atmospheric pressure contribute to estimation of global solar radiation. A search has been carried out to find the strongly correlated variables which contribute more to this assessment. On that basis, an ANN model is devised for the prediction of GSR. The results are compared with those obtained using multiple linear regression (MLR) model. The performances of the models are checked using various statistical parameters such as mean absolute deviation (MAD), mean square error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE) and correlation coefficient (R). A comparison of the predicted values obtained from the two methods and the actual values obtained from a weather monitoring station shows that the developed ANN model generates values closer to actual. The best MAPE calculated by using ANN model is 2.851%.\",\"PeriodicalId\":142069,\"journal\":{\"name\":\"2021 IEEE Second International Conference on Control, Measurement and Instrumentation (CMI)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Second International Conference on Control, Measurement and Instrumentation (CMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMI50323.2021.9362766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Second International Conference on Control, Measurement and Instrumentation (CMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMI50323.2021.9362766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在利用人工神经网络(ANN)模型对全球太阳辐射(GSR)进行预测。各种气象参数,例如相对湿度、平均气温、风速、风向、露点和大气压力,都有助于估算全球太阳辐射。已经进行了一项搜索,以找到对这一评估贡献更大的强相关变量。在此基础上,设计了一个人工神经网络模型来预测GSR。并与多元线性回归(MLR)模型的结果进行了比较。利用平均绝对偏差(MAD)、均方误差(MSE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)和相关系数(R)等统计参数对模型的性能进行了检验。将两种方法的预测值与某气象监测站的实际值进行了比较,表明所建立的人工神经网络模型的预测值更接近实际。利用人工神经网络模型计算出的最佳MAPE为2.851%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meteorological Data Driven Prediction of Global Solar Radiation
This paper aims at prediction of global solar radiation (GSR) using artificial neural network (ANN) model. Various meteorological parameters such as relative humidity, average air temperature, wind speed, wind direction, dew point and atmospheric pressure contribute to estimation of global solar radiation. A search has been carried out to find the strongly correlated variables which contribute more to this assessment. On that basis, an ANN model is devised for the prediction of GSR. The results are compared with those obtained using multiple linear regression (MLR) model. The performances of the models are checked using various statistical parameters such as mean absolute deviation (MAD), mean square error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE) and correlation coefficient (R). A comparison of the predicted values obtained from the two methods and the actual values obtained from a weather monitoring station shows that the developed ANN model generates values closer to actual. The best MAPE calculated by using ANN model is 2.851%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信