利用可观察的语言特征改进英语词汇混合的自动预测

Jarem Saunders
{"title":"利用可观察的语言特征改进英语词汇混合的自动预测","authors":"Jarem Saunders","doi":"10.18653/v1/2023.sigmorphon-1.10","DOIUrl":null,"url":null,"abstract":"The process of lexical blending is difficult to reliably predict. This difficulty has been shown by machine learning approaches in blend modeling, including attempts using then state-of-the-art LSTM deep neural networks trained on character embeddings, which were able to predict lexical blends given the ordered constituent words in less than half of cases, at maximum. This project introduces a novel model architecture which dramatically increases the correct prediction rates for lexical blends, using only Polynomial regression and Random Forest models. This is achieved by generating multiple possible blend candidates for each input word pairing and evaluating them based on observable linguistic features. The success of this model architecture illustrates the potential usefulness of observable linguistic features for problems that elude more advanced models which utilize only features discovered in the latent space.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Automated Prediction of English Lexical Blends Through the Use of Observable Linguistic Features\",\"authors\":\"Jarem Saunders\",\"doi\":\"10.18653/v1/2023.sigmorphon-1.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of lexical blending is difficult to reliably predict. This difficulty has been shown by machine learning approaches in blend modeling, including attempts using then state-of-the-art LSTM deep neural networks trained on character embeddings, which were able to predict lexical blends given the ordered constituent words in less than half of cases, at maximum. This project introduces a novel model architecture which dramatically increases the correct prediction rates for lexical blends, using only Polynomial regression and Random Forest models. This is achieved by generating multiple possible blend candidates for each input word pairing and evaluating them based on observable linguistic features. The success of this model architecture illustrates the potential usefulness of observable linguistic features for problems that elude more advanced models which utilize only features discovered in the latent space.\",\"PeriodicalId\":186158,\"journal\":{\"name\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2023.sigmorphon-1.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.sigmorphon-1.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

词汇混合的过程很难可靠地预测。混合建模中的机器学习方法已经证明了这一困难,包括尝试使用当时最先进的LSTM深度神经网络进行字符嵌入训练,在给定有序组成词的情况下,最多只能在不到一半的情况下预测词汇混合。该项目引入了一种新颖的模型架构,该架构仅使用多项式回归和随机森林模型,即可显著提高词汇混合的正确预测率。这是通过为每个输入词配对生成多个可能的混合候选词,并基于可观察到的语言特征对它们进行评估来实现的。这种模型架构的成功说明了可观察语言特征对于那些只利用在潜在空间中发现的特征的更高级模型无法解决的问题的潜在有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Automated Prediction of English Lexical Blends Through the Use of Observable Linguistic Features
The process of lexical blending is difficult to reliably predict. This difficulty has been shown by machine learning approaches in blend modeling, including attempts using then state-of-the-art LSTM deep neural networks trained on character embeddings, which were able to predict lexical blends given the ordered constituent words in less than half of cases, at maximum. This project introduces a novel model architecture which dramatically increases the correct prediction rates for lexical blends, using only Polynomial regression and Random Forest models. This is achieved by generating multiple possible blend candidates for each input word pairing and evaluating them based on observable linguistic features. The success of this model architecture illustrates the potential usefulness of observable linguistic features for problems that elude more advanced models which utilize only features discovered in the latent space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信